研究生: |
蕭東琦 Tung-Chi Hsiao |
---|---|
論文名稱: |
以固定氣流產生體積可調變微液滴之研究 Volume Tunable Micro-Droplet Generation by Constant Gas flow |
指導教授: |
蘇育全
Yu-Chuan Su |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 液滴 、微液滴 、表面張力 、液滴融合 、PDMS接合 、微總體系統晶片 |
外文關鍵詞: | droplet, micro droplet, surface tension, merge, PDMS bonding, micro-TUS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目標是發展一套簡易並具有彈性之微液滴產生與融合方式,使用壓力與微流道的幾何特性取代複雜的電氣式驅動,以利生醫晶片上的各種運用,避免電氣式因電磁場作用容易影響檢測結果,或破壞生物分子的各種問題;並且能夠有效改變產生微液滴的大小,快速產生定量與融合所需不同成分比例與體積的微液滴。
主要的觀念源自於水龍頭滴出水滴的觀念–表面張力與重力的相互關係;當水滴所受到的重力大於表面張力時,水滴會被重力向下拉扯直到斷面出現,因此產生水滴。在本研究的晶片中以氣壓來重現重力場,搭配疏水性漸縮與漸擴的微流道,以連續穩定的氣壓方式驅動,切割產生微液滴並消除衛星液滴。由於水龍頭滴出的液滴體積大小並非固定,勢必和液體的黏滯係數、重力場大小、表面張力大小以及液體流速等相關,因此只要改變某一參數就會得到不同大小的液滴,如此觀念也可以運用到本研究的晶片上,達到控制微液滴大小的效果。
目前已達成的功能為:純粹藉由控制注射幫浦推擠液體流速,以及空氣壓縮機所產生的氣壓,便可得到體積0.5 至50 nl的微液滴,並可初步將兩顆產生之液滴融合在一起。未來目標則是建構平行化陣列式液滴產生操控系統,相信將可滿足生醫自動化檢測系統在成本與功能上迫切的需求。
This paper presents a droplet generation scheme that employs constant pumping sources to periodically digitize a continuous liquid flow into nanoliter segments with desired volumes. In this scheme, a constant-pressure air flow assisted by channels with certain geometries is used to break a constant-rate liquid flow and dispense the separated segments. Simply by adjusting the air pressure and liquid flow rate, droplets with desired volumes can be generated. In the prototype demonstration, the droplet generators are made of PDMS microfluidic channels with preferred geometries and surface properties. 3-way junctions integrated with converging/diverging channels are utilized to guide the flows. Through the discretization sequence, liquid is temporally held by the channel to facilitate the cutting executed by air flow. Based on this scheme, it has been demonstrated that a continuous liquid flow can be split into segments with volumes ranging from 0.5 to 50 nanoliters. In addition to air pressure and liquid flow rate, the resulted droplet volumes are also found to be affected by channel geometries. As such, this adjustable droplet generation scheme opens up a new class of metering and manipulation prospects for microfluidic applications.
[1]. Y.-C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, and A.P. Lee, “Design of Microfluidic Channel Geometries for the Control of Droplet Volume, Chemical Concentration, and Sorting,” Lab on a Chip, vol. 4, pp. 292-298, 2004.
[2]. T. Nisisako, T. Torii, and T. Higuchi, “Droplet Formation in a Microchannel Network,” Lab on a Chip, vol. 2, pp. 24-26, 2002
[3]. Cramer C, Fischer P, Windhab EJ, ”Drop formation in a co-flowing ambient fluid, “ Chemical Engineering Science 59 (15): 3045-3058 Aug ,2004
[4]. E.R. Lee, Microdrop Generation. Boca Raton: CRC Press, 2003
[5]. N.-T.Nguyen and S.T. Wereley, Fundamentals and Applications of Microfluidic. Boston: Artech House, 2002
[6]. D.R. Link, S.L. Anna, D.A. Weitz, and H.A. Stone, “Geometrically Mediated Breakup of Drops in Microfluidic Devices,” Physical Review Letters, vol. 92, pp. 054503, 2004.
[7]. M.G. Pollack, A.D. Shenderov, and R.B. Fair, “Electrowetting-Based Actuation of Droplets for Integrated Microfluidics,” Lab on a Chip, vol. 2, pp. 96-101, 2002.
[8]. Cho SK, Moon HJ, Kim CJ, ”Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” Microelectromechanical Systems, Vol. 12, Is. 1, pp. 70-80, Feb, 2003.
[9]. F.-G Tseng, C. Linder, C.-J Kim, and C.-M Ho, “Control of mixing with micro-injectors for combustion application,” in Proc. MEMS, ASME Int. Mechanical Engineering Congress and Exposition, vol. 59, DSC, Atlanta, GA, Nov. 1996, pp. 183–187.
[10]. I. Endo,Y. Sato, S. Saito, T. Nakagiri, S. Ohno, and Canon, Inc., “Bubble jet recording method and apparatus in which a heating element generates bubbles in multiple liquid flow paths to project droplets,” U.S. Pat. 4 740 796, Apr. 1988.
[11]. Fan-Gang Tseng, Chang-Jin Kim, Chih-Ming Ho, ”A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops - part I: concept, design, and model,” Microelectromechanical Systems, Vol. 11, Is. 5, pp. 427-436,Oct. ,2002.
[12]. Masumi Yamada and Minoru Seki, “Nanoliter-Sized Liquid Dispenser Array for Multiple Biochemical Analysis in Microfluidic Devices,” Analytical Chemistry, Vol. 76, No 4, pp. 895-899, Feb. 15, 2004.
[13]. S. Middleman, Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops. San Diego: Academic Press, 1995.
[14]. J.D. Tice, H. Song, A.D. Lyon, and R.F. Ismagilov, “Formation of Droplets and Mixing in Multiphase Microfludics at Low Values of the Reynolds and the Capillary Numbers,”Langmuir,vol. 19, pp. 9127-9133, 2003.
[15]. Zheng B, Tice JD, Ismagilov RF, “Formation of Arrayed Droplets by Soft Lithography and Two-Phase Fluid Flow, and Application in Protein Crystallization,” Adv. Mater, Vol. 16, No. 15, pp. 1365-1368, 2004.
[16]. X. D. Shi, Michael P. Brenner, Sidney R. Nagel, “A Cascade of Structure in a Drop Falling from a Faucet,” Science, New Series, Vol. 265, No. 5169, pp. 219-222, Jul. 8, 1994.
[17]. P. Doshi, I. Cohen, W.W. Zhang, M. Siegel, P. Howell, O.A. Basaran, and S.R. Nagel, “Persistence of Memory in Drop Breakup: The Breakdown of Universality,” Science, vol.302, pp.1185-1188, 2003.
[18]. Garstecki P, Fuerstman MJ, Stone HA, et al., ”Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up ” Lab On A Chip, 6 (3): 437-446 MAR 2006.
[19]. W. adamson, “Physical Chemistry of Surfaces,” 6th ed, 1997.
[20]. 張佩郁,“微流元件內表面張力驅動之流體流動現象的實驗探討,”國立成功大學航空太空工程學所畢業論文, 2003
[21]. Carsten Cramer, Peter Fischer, Erich J. Windhab, “Drop Formation in a Co-flow ambient fluid,” Chemical Engineering Science, Vol. 59, pp. 3045-3058, 2004
[22]. Che-hsin Lin, Gwo-bin Lee, “Polymer-MEMS and Its Applications on Microfluidig chip for Bio-analysis,” 電子月刊, 2003.
[23]. http://www.geocities.com/guerinlj/
[24]. http://www.microchem.com/
[25]. V.-M. Graubner, R. Jordan, O. Nuyken, T. Lippert, M. Hauer, B. Schnyder, A. Wokaun, Incubation and ablation behavior of poly(dimethylsiloxane) for 266 nm irradiation, Appl. Surf. Sci. 197–198 (2002) 786–790.
[26]. Jeung Sang Go, Shuichi Shoji, “A Disposable, Dead Volume-free and Leak-free In-plate PDMS microvalve,” Sensor and Actuation A, Vol. 114 , pp.438-444, 2004.
[27]. B. de Heij, C. Steinert, H. Sandmaier, and R. Zengerle, “A Tunable and Highly-Parallel Picoliter Dispenser Based on Direct Liquid Displacement,” Sensors and Actuators A, vol. 103, pp. 88-92, 2003.
[28]. C.-M Ho, “Fluidics-the link between micro and nano sciences and technologies-,” in Proc. IEEE Int. Conf.MEMS, Interlaken, Switzerland, Jan. 2001, pp. 375–384.
[29]. B. de Heij, C. Steinert, H. Sandmaier, and R. Zengerle, “A Tunable and Highly-Parallel Picoliter Dispenser Based on Direct Liquid Displacement,” Sensors and Actuators A, vol. 103, pp. 88-92, 2003.
[30]. K. Handique, D.T. Burke, C.H. Mastrangelo, and M.A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Analytical Chemistry, vol. 73, pp. 1831-1838, 2001.
[31]. S.B. Fuller, E.J. Wilhelm, and J.M. Jacobson, “Ink-Jet Printed Nanoparticle Microelectromechanical Systems,” Journal of Microelectromechanical Systems, vol. 11, pp. 54-60, 2002.
[32]. Thomas Ward Magalie Faivre Manouk Abkarian Howard A. Stone ,“Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping,” Electrophoresis 2005, 26, 3716–3724
[33]. Marc A. Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen R. Quake, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science, Vol.288, pp. 113-116, Apr. , 2000.
[34]. Shingo Okushima, Takasi Nisisako, Toru Torii, and Toshiro Higuchi, "Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices," Langmuir 2004, 20, 9905-9908.