研究生: |
莊琬婷 Wan-Ting Chuang |
---|---|
論文名稱: |
降-升壓切換式整流器之研製 Design and implementation of a buck-boost switch-mode rectifier |
指導教授: |
廖聰明博士
Dr. Chang-Ming Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 166 |
中文關鍵詞: | 切換式整流器 、降-升壓式 、額定分析 、功因校正控制 、電流控制 、電壓控制 、量化電壓負載調控 、強健控制 、非線性行為 、EMTP模擬 |
外文關鍵詞: | Switch-mode rectifier, buck-boost, rating analysis, power factor correction, current control, voltage control, quantitative voltage load regulation control, robust control, nonlinear behavior, EMTP simulation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
切換式整流器已逐漸被用為許多電力電子設備之前級轉換器,而降-升壓切換式整流器具有許多特點及特殊應用場合,因此,本論文旨在於從事降-升壓切換式整流器之研製及其動態控制。首先了解功因校正控制之基本事務、控制方式及常用規範。接著概覽切換式整流器之ㄧ些實用事務,包括其分類、可能電路之比較特性及控制機構等。尤其探究各型降-升壓切換式整流器之組成特性及其應用例。
眾所周知,爲使所開發之電力電子電路兼具低成本及強健操控特性,其組成元件額定之妥適決定係非常重要者。本論文先從事理想切換式整流器之元件額定推導及評定,接著修正此推導結果,在考慮切換頻率漣波成分下,得到實際切換式整流器組成元件額定之準確估算。然後依據此結果設計所研習切換式整流器之組成元件。並以一些電磁暫態程式(ElectroMagnetic Transients Program, EMTP)模擬及實驗結果確認所推導結果之正確性,以及顯示所組立切換式整流器之性能。
在動態控制方面,電流及電壓控制迴路各自之比例積分迴授控制器先依所欲之控制要求妥善予以設計。接著為增進系統對抗不確定動態、參數及工作狀況變化以及擾動等之強健性,再輔加一簡單之強健控制架構。所提強健控制器關鍵參數之決定折衷考量了控制性能、雜訊干擾效應及非線性行為之影響。本論文所提控制技巧之有效性及所研製切換式整流器之操控性能均以一些模擬及實測結果予以驗證。
Switch-mode rectifier (SMR) has been gradually employed as a front-end stage of various power electronic equipments. And the buck-boost SMR possesses many distinguished features and specific applications. Thus this thesis is mainly concerned with the development of a buck-boost SMR and its dynamic control. First, the fundamentals of power factor correction issues and control approaches are reviewed, and some commonly referred standards are surveyed. Then the overview of practical issues for SMRs is made, including the classifications and comparative features of possible SMR circuits and control schemes. Particularly, the circuit configurations, features and applications of various types of buck-boost SMRs are explored.
As generally recognized, the proper rating determination for power converter circuit components is very important to yield the circuit with cost-effective and robust operation. In this thesis, the component rating derivation and assessment of an ideal SMR are first made. Then the derivation is modified to accurately estimate the component ratings of an actual buck-boost SMR considering the switching frequency ripples. According to the derived results, the constituted components of the studied SMR are designed. Some simulated results using ElectroMagnetic Transients Program (EMTP) and measured results are provided to confirm the correctness of the derived formulas and to demonstrate the performance of the established SMR.
As to the dynamic control, in both of the current and voltage control schemes, the proportional-plus-integral (PI) feedback controller is first properly designed according to its control requirements. Then it is augmented with a simple robust control scheme to increase the robustness against the system uncertainties, the parameter and operating condition changes and the disturbances. In performing the robust controller design, its key parameters are determined taking into account the compromise between the control performance, the effects of contaminated noises and the nonlinear behaviors. Validity of the proposed control approach and the performance of the developed SMR are confirmed by some simulation and experimental results.
A. Power electronics
[1] N. Mohan, T. M. Undeland and W. P. Robbins, Power
Electronics Converters, Applications and Design, 3rd
ed., New York, John Wiley & Sons, Inc., 2003.
[2] R. W. Erickson and D. Maksimovic, Fundamentals of power
electronics, 2nd ed., Kluwer Academic Publishers, 2001.
[3] L. Cividino, “Power factor, harmonic distortion;
causes, effects and considerations,” in Proc. INTELEC
Conf., pp. 506-513, 1992.
[4] A. R. Prasad, P. D. Ziogas and S. Manias, “A novel
passive waveshaping method for single-phase diode
rectifier,” IEEE Trans. Ind. Electron., vol. 37, no.
3, pp. 521-530, 1990.
[5] I. Takahashi and H. Haga, “Inverter control method of
IPM motor to improve power factor of diode rectifier,”
in Proc. PCC Osaka ‘02, vol. 1, pp. 142-147, 2002.
[6] IEC 1000-3-2, International Standard, Part 3: Limits-
Section 2: Limit for harmonic current emission
(equipment input current 16A per phase), 1995.
B. Active power filter
[7] L. Moran, P. Werlinger, J. Dixon and R. wallace, “A
Series active power filter which compensates current
harmonics and voltage unbalance simultaneously,” in
Proc. IEEE PESC ‘95, pp. 222-227, 1995.
[8] L. Malesani, L. Rossetto and P. Tenti, “Active power
filter with hybrid energy storage,” IEEE Trans. Power
Electron., vol. 6, pp. 392-397,1991.
[9] M. V. Ataide and J. A. Pomilio, “Single-phase shunt
active filter: a design procedure considering harmonics
and EMI standards,” in Proc. IEEE ISIE ‘97, vol. 2,
pp. 422-427, 1997.
[10] H. Fujita and H. Akagi, “The unified power quality
condition: the integration of series-and shunt- active
filter,” IEEE Trans. Power Electron., vol. 13, pp.
315-322, 1998.
[11] D. H. Chen and S. J. Xie, “Review of the control
strategies applied to active power filters,” in Proc.
IEEE DRPT ‘04, vol. 2, pp. 666-670, 2004.
[12] M. Sedighy, S. B. Dewan and F. P. Dawson, “A robust
digital current control method for active power
filters,” IEEE Trans. Ind. Applicat., vol. 36, pp.
1158-1164, 2000.
[13] K. Nishida and M. Nakaoka, “Deadbeat current control
with adaptive predictor for three-phase voltage-source
active power filter,” in Proc. IEEE PESC ‘04, vol.
2, pp. 1010-1016, 2004.
C. Switch-mode rectifiers
[14] A. Kandianis and S. N. Manias, “A comparative
evaluation of single-phase SMR converters with active
power factor correction,” in Proc. IEEE IECON ‘94,
pp. 244-249, 1994.
[15] J. Sebastian, M. Jaureguizar and M. Uceda, “An
overview of power factor correction in single-phase
off-line power supply systems,” in Proc. IEEE IECON
‘94, pp.1688-1693, 1994.
[16] W. Huai and I. Batarseh, “Comparison of basic
converter topologies for power factor correction,” in
Proc. IEEE Southeastcon ‘98, pp. 348-353, 1998.
[17] G. A. Karvelis, S. N. Manias and G. Kostakis, “A
comparative evaluation of power converters used for
current harmonics elimination,” in Proc. IEEE HQP
‘98, vol. 1, pp. 227-232, 1998.
[18] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddada, A.
Pandey and D. P. Kothar. “A revew of single-phase
improved power quality AC-DC converters,” IEEE Trans.
Ind. Electron., vol. 50, pp. 962-981, 2003.
[19] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J.
Uceda, “Single phase power factor correction: a
survey,” IEEE Trans. Power Electron., vol. 18, pp.
749- 755, 2003.
[20] M.S. Dawande and G.K. Dubey, “Single phase switch
mode rectifiers”, IEEE PEDS ‘96, pp 637-543, 1996.
[21] B. N. Singh, P. Jain and G. Joos, “Three-phase AC/DC
regulated power supplies: a comparative evaluation of
different topologies,” in Proc. IEEE APEC ‘00, vol.
1, pp. 513-518, 2000.
[22] M. H. L. Chow, C. K. Tse and Y. S. Lee, “An efficient
PFC voltage regulator with reduced redundant power
processing,” in Proc. IEEE PESC ‘99, vol. 1, pp. 87-
92, 1999.
[23] T. Yoshida, O. Shizuka, O. Miyashita and K Ohniwa,
“An improvement technique for the efficiency of high-
frequency switch-mode rectifiers,” IEEE Trans. Power
Electron., vol. 15, pp. 1118-1123, 2000.
[24] L. Dixon, “High power factor switching pre-regulator
design optimization,” in Unitrode Seminar, SEM-700,
pp. 7/1- 7/2, 1990.
[25] L. Dixon, “Control loop design,” in Unitrode Seminar
SEM-800, pp. 7/1-7/10, 2001.
[26] C. M. Liaw, T. H. Chen and W. L. Lin, “Dynamic
modeling and control of a step up/down switching-mode
rectifier,” IEE Proc. Electr. Power Applcat., vol.
146, pp. 377-324, 1999.
[27] B. Choi, S. S. Hong and H. Park, “Modeling and small-
signal analysis of controlled on-time boost power-
factor-correction circuit,” IEEE Trans. Ind.
Electron., vol. 48, pp. 136-142, 2001.
[28] Z. Liang, B. Lu, J. D. van Wyk and F. C. Lee,
“Integrated CoolMOS FET/SiC-diode module for high
performance power switching,” IEEE Trans. Power
Electron., vol. 20, pp. 679-686, 2005.
D. Buck-boost type SMRs
[29] T. Iida, G. Majumdar, H. Mori and H. Iwamoto,
“Constant output voltage control method for buck-boost
type switched mode rectifier with fixed switching
pulse pattern,” in Proc. IEEE ICIT ‘96, pp. 266-268,
1996.
[30] K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori
and F. Ueda, “A comparison of various buck-boost
converters and their application to PFC,” in Proc.
IEEE IECON ‘02, vol. 1, pp.30-36, 2002.
[31] J. Chen, D. Maksimovic and R. Erickson, “A new low-
stress buck-boost converter for universal-input PPC
applications,” in Proc. IEEE APEC ’01, vol. 1, pp.
343-349, 2001.
[32] J. Chen, D. Maksimovic and R. Erickson, “Buck-boost
PWM converters having two independently controlled
switches,” in Proc. IEEE PESC ‘01, vol. 2, pp. 736–
741, 2001.
[33] A. R. Prasad, P. D. Ziogas and S. Manias, “A new
active power factor correction method for single-phase
buck-boost ac-dc converter,” in Proc. IEEE APEC ‘92,
pp. 814-820, 1992.
[34] V. F. Pires and J. F. Silva, “Three-phase single-
stage four-switch PFC buck-boost-type rectifier,”
IEEE Trans. Ind. Electron., vol. 52, pp. 444- 453,
2005.
[35] R. Ayyanar, N. Mohan and J. Sun, “Single-stage three- phase power-factor-correction circuit using three
isolated single-phase SEPIC converters operating in
CCM,” in Proc. IEEE PESC ‘00, vol. 1, pp. 353-358,
2000.
[36] K. Jirasereeamornkul, Y. Roungraungpalangkul and K.
Chammongthai, “A single stage single switch power
factor correction converter,” in Proc. IEEE ISCAS
‘01, vol. 3, pp. 397-400, 2001.
[37] R. Erickson, M. Madigan and S. Singer, “Design of a
simple high-power- factor rectifier based on the
flyback converter,” in Proc. IEEE APEC ‘90, pp. 792-
801, 1990.
[38] Y. Nishida, S. Motegi and A. Maeda, “A single-phase
buck-boost AC-to-DC converter with high-quality input
and output waveforms,” in Proc. IEEE ISIE ‘95, vol.
1, pp. 433-438, 1995.
[39] Y. Nishida, A. Maeda and H. Tomita, “A new
instantaneous-current controller for three-phase buck-
boost and buck converters with PFC operation,” in
Proc. IEEE APEC ‘95, pp. 875-883, 1995.
[40] A. Nakajima, S. Motegi and A. Maeda, “Comparison of
the characteristics between buck and buck-boost high-
power-factor converters with pulse-space-modulation,”
in Proc. IEEE IECON ‘99, vol. 1, pp. 168-173, 1999.
[41] O. Lopez, L. Garcia de Vicuna, M. Castilla, J. Matas
and M. Lopez, “Sliding-mode-control design of a high-
power-factor buck-boost rectifier,” IEEE Trans. Ind.
Electron., vol. 46, pp. 604-612, 1999.
[42] B. S. Lee and R. Krishnan, “A variable voltage
converter topology for permanent-magnet brushless DC
motor drives using buck-boost front-end power stage,”
in Proc. IEEE ISIE ‘99, vol.2, pp. 689-694, 1999.
[43] W. Guo and P. K. Jain, “A power-factor-corrected AC-
AC inverter topology using a unified controller for
high-frequency power distribution architecture,” IEEE
Trans. Ind. Electron., vol. 51, pp. 874-883, 2004.
[44] L. Brush, “Distributed power architecture demand
characteristics,” in Proc. IEEE APEC ‘04, vol. 1,
pp. 342-345, 2004.
[45] P. Lindman, “Powering tomorrow's data internetworking
systems,” in Proc. IEEE INTELEC ‘00, pp. 506-511,
2000.
[46] L. C. G. de Freitas, E. E. A. Coelho, J. B. Vierira
Jr., M. G. Simoes, and L. C. de Freitas, “A single-
stage PFC converter applied as an electronic ballast
for fluorescent lamps,” in Proc. IEEE APEC ‘04, vol.
1, pp. 164- 169, 2004.
[47] M. Ponce, A. J. Martinez, J. Correa and J. Arau,
“Evaluation of an improved input current shaper used
as power factor corrector in electronic ballast,” in
Proc. IEEE ISCAS ‘02, vol. 4, pp. 349-352, 2002.
[48] J. O’Connor, “Dimmable cold-cathode fluorescent lamp
ballast design using the UC3871,” in Taxis Instrument
Inc., 1999.
E. Soft-switching SMRs
[49] Z. Xunwei, M. Elmore and F.C.Lee, “Comparison of
single-phase active-clamped PFC converters,” in Proc.
IEEE PESC ‘97, vol.1 , pp. 115- 120, 1997.
[50] K. Wang, F. C. Lee, G. Hua and D. Borojevic, “A
comparative study of switching losses of IGBTs under
hard-switching, zero-voltage switching and zero-
current-switching,” in Proc. IEEE PESC ‘94, vol. 2,
pp. 1196- 1204, 1994.
[51] S. Y. R. Hui, K. W. E. Cheng and S. R. N. Prakash, “A
fully soft-switched extended-period quasi-resonant
power-factor-correction circuit,” IEEE Trans. Power
Electron., vol. 12, pp. 922-930, 1997.
[52] I. D. Kim and B. K. Bose, “New ZCS turn-on and ZVS
turn-off unity power factor PWM rectifier with reduced
conduction loss and no auxiliary switches,” IEE Proc.-
Electr. Power Applcat., vol. 147, pp. 146-152, 2000.
[53] S. H. Li and C. M. Liaw, “Modelling and quantitative
direct digital control for a DSP-based soft-switching-
mode rectifier,” IEE Proc.-Electr. Power Applicat.,
vol. 150, pp. 21-30, 2003.
[54] K. Taniguchi, H. Baba, M. Ogawa and M. Kawaji,
“Driving circuit for single-pulse soft-switching PFC
converter,” in Proc. PCC-Osaka, pp. 1232- 1237, 2002.
[55] C. M. Liaw and T. H. Chen, “A soft-switching mode
rectifier with power factor correction and high
frequency transformer link,” IEEE Trans. Power
Electron., vol. 5, pp. 644-654, 2000.
[56] H. F. Liu, Y. H. Liu and Y. Y. Tzou, “Implementation
of ZVT soft switching technique in a single-phase PFC
rectifier for server power supply,” in Proc. IEEE
PIEMC ‘00, vol. 5, pp. 584-589, 2000.
[57] Y. Jang, D. L. Dillman and M. M. Jovanovic, “Soft-
switched PFC boost rectifier with integrated ZVS two-
switch forward converter,” in Proc. IEEE APEC ‘05,
vol. 2, pp. 1139-1144, 2005.
[58] Y. Zhang and P. C. Sen, “A new soft-switching
technique for buck, boost, and buck-boost
converters,” IEEE Trans. Ind. Applicat. vol. 39, pp.
1775- 1782, 2003.
[59] H. Matsuo, H. Watanabe, F. Kurokawa and L. Tu,
“Analysis of the novel soft-switching buck-boost type
AC-DC converter using magnetic coupling,” in Proc.
IEEE PESC ‘00, vol. 3, pp. 1239-1246, 2000.
[60] G. Moschopoulos and P. K. Jain, “A novel single-phase
soft-switched rectifier with unity power factor and
minimal component count,” IEEE Trans. Ind. Electron.,
vol. 51, pp. 566-576, 2004.
F. Rating assessment
[61] R. Redl and L. Balogh, “RMS, DC, peak, and harmonic
currents in high- frequency power-factor correctors
with capacitive energy storage,” in Proc. IEEE APEC
‘92, pp. 533-540, 1992.
[62] J. J. Spangler and A. K. Behera, “A comparison
between hysteretic and fixed frequency boost
converters used for power factor correction,” n Proc.
IEEE APEC ‘93, pp. 281-286, 1993.
[63] J. S. Lai and D. Chen, “Design consideration for
power factor correction boost converter operating at
the boundary of continuous conduction mode and
discontinuous conduction mode,” in Proc. IEEE APEC
‘93, pp. 267-273, 1993.
[64] AWG Table:http://www.pupman.com/listarchives/1998/
April/msg00222.html
[65] Core: http://www.micrometals.com/parts_index.html
G. Dynamic control
[66] E. Rodriguez, O. Garcia, J. A. Cobos, J. Arau and J.
Uceda, “A single-stage rectifier with PFC and fast
regulation of output voltage,” in Proc. IEEE CIEP
‘98, pp. 30-36, 1998.
[67] D. S. L. Simonetti, J. Sebastian and J. Uceda, “A
small-signal model for SEPIC, Cuk and flyback
converters as power factor preregulators in
discontinuous conduction mode,” in Proc. IEEE PESC
‘93, pp. 735-741, 1993.
[68] J. C. Le Bunetel and M. Machmoum, “Control of boost
unity power factor correction systems,” in Proc. IEEE
IECON ‘99, vol. 1, pp. 266-271, 1999.
[69] M. C. Ghanem, K. Al-Haddad and G. Roy, “A new control
strategy to achieve sinusoidal line current in a
cascade buck-boost converter,” IEEE Trans. Ind.
Electron., vol. 43, pp. 441-449, 1996.
[70] G. K. Andersen and F. Blaabjerg, “Current programmed
control of a single phase two-switch buck-boost power
factor correction circuit,” in Proc. IEEE APEC ‘01,
vol. 1, pp. 350-356, 2001.
[71] B. Raymond and J. Sepe, “A unified approach to
hysteretic and ramp-comparison current controllers,”
in Conf. Rec. IEEE-IAS Annu. Meeting, pp. 724-731,
1993.
[72] C. A. Canesin and I. Barbi, “Analysis and design of
constant-frequency peak-current-controlled high-power-
factor boost rectifier with slope compensation,” in
Proc. IEEE APEC ‘96, pp. 807-813, 1996.
[73] M. Dawande and G. K. Dubey, “Switching techniques for
switch mode rectifier,” in Proc. IEEE PEDS ‘99, vol.
1, pp. 167-173, 1999.
[74] A. Fontan, S. Ollero, E. de la Cruz and J. Sebastian,
“Peak current mode control applied to the forward
converter with active clamp,” in Proc. IEEE PESC
‘98, vol. 1, pp. 45-51, 1998.
[75] F. Mihalic and M. Milanovic, “Wide-band frequency
analysis of the randomized boost rectifier,” in Proc.
IEEE PESC ‘00, pp. 946-951, 2000.
[76] T. Takeshita, Y. Toyoda and N. Matsui, “Harmonic
suppression and DC voltage control of single-phase PFC
converter,” in Proc. IEEE PESC ‘00, vol. 2, pp. 571-
576, 2000.
[77] N. Bhiwapurkar, M. Rathi and N. Mohan, “Power factor
correction circuit for faster dynamics and zero steady
state error using dual voltage controllers,” in Proc.
IEEE IECON ‘02, vol. 1, pp. 204-208, 2002.
[78] J. Luo, M. K. Jeoh, and H. C. Huang, “A new
continuous conduction mode PFC IC with average current
mode control,” in PEDS ‘03, vol. 2, pp. 1110- 1114,
2003.
[79] M. O. Eissa, S. B. Leeb, G. C. Verghese and A. M.
Stankovic, “A fast analog controller for a unity-
power factor AC/DC converter,” in Proc. IEEE APEC
‘94, vol. 2, pp. 551-555, 1994.
[80] O. Lopez, L. G. de Vicuna and M. Castilla, “Sliding
mode control design of a boost high-power-factor pre-
regulator based on the quasi-steady-state approach,”
in Proc. IEEE PESC ‘01, vol. 2, pp. 932-935, 2001.
[81] L. Rossetto, G. Spiazzi, P. Tenti, B. Fabiano and C.
Licitra, “Fast-response high-quality rectifier with
sliding mode control,” IEEE Trans. Power Electron.,
vol. 9, pp. 146-152, 1994.
[82] G. Zhu, H. Wei, P. Kornetzky and I. Batarseh, “Small-
signal modeling of a single-switch AC/DC power-factor-
correction circuit,” IEEE Trans. Power Electron.,
vol. 14, pp. 1142-1148, 1999.
[83] P. Mattavelli, G. Spiazzi and P. Tenti, “Predictive
digital control of power factor preregulators with
input voltage estimation using disturbance
observers,” IEEE Trans. Power Electron., vol. 20, pp.
140-147, 2005.
[84] W. Zhang, G. Feng, Y.-F Liu and B. Wu, “DSP
implementation of predictive control strategy for
power factor correction (PFC),” in Proc. IEEE APEC
‘04, vol. 1, pp. 67-73, 2004.
[85] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den
Bossche and J. A. Melkebeek, “Duty-ratio feedforward
for digitally controlled boost PFC converters,” IEEE
Trans. Ind. Electron., vol. 52, pp. 108-115, 2005.
[86] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode
rectifier with digital robust ripple compensation and
current waveform controls,” IEEE Trans. Power
Electron., vol. 19, pp. 560-566, 2004.
[87] A. Kaletsanos, F. Xepapas, S. Xepapas and S. N.
Manias, “Nonlinear control technique for three-phase
boost AC/DC power converter,” in Proc. IEEE PESC
‘03, vol. 3, pp. 1080-1085, 2003.
[88] C. M. Liaw and S. J. Chiang, “Robust control of multi-
module current-mode controlled converters,” IEEE
Trans. Power Electron., vol. 8, pp. 455-465, 1993.
[89] C. M. Liaw, “System parameter estimation from sampled
data,” Control Dynamic system, vol. 63, pp. 161-195,
1994.
H. Nonlinear dynamics
[90] M. Orabi and T. Ninomiya, “Nonlinear dynamics of
power-factor- correction converter,” IEEE Trans. Ind.
Electron., vol. 50, pp. 1116-1125, 2003.
[91] C. K. Tse and M. Di Bernardo, “Complex behavior in
switching power converters,” in Proc. IEEE, vol. 90,
pp. 768-781, 2002.
[92] K. W. E. Cheng, M. J. Liu, J. Wu and N. C. Cheung,
“Study of bifurcation and chaos in the current-mode
controlled buck-boost DC-DC converter,” in Proc. IEEE
IECON ‘01, vol. 2, pp. 838–843, 2001.
[93] K. W. E. Cheng, M. Liu and J. Wu, “Experimental study
of bifurcation and chaos in the buck-boost
converter,” Proc. IEE-Elect. Power Applicat., vol.
150, pp. 45-61, 2003.
[94] H. Ren, C. Jin and T. Ninomiya, “Low-frequency
bifurcation behaviors of PFC converter,” in Proc.
IEEE ISCAS ‘05, pp. 2827-2830, 2005.
[95] M. Orabi, T. Ninomiya and J. Chunfeng, “Novel
developments in the study of nonlinear phenomena in
power factor correction circuits,” in Proc. IEEE
IECON ‘02, vol. 1, pp. 209-215, 2002.
[96] S. K. Mazumder, A. H. Nayfeh and D. Boroyevich,
“Theoretical and experimental investigation of the
fast- and slow-scale instabilities of a DC-DC
converter,” IEEE Trans. Power Electron., vol. 16, pp.
201-216, 2001.
[97] H. H. C. Iu, Y. Zhou and C. K. Tse, “Fast-scale
instability in a PFC boost converter under average
current-mode control,” Int. J. Circuit Theory Appl.,
vol. 31, pp. 611-624, 2003.