研究生: |
黃圭璋 Huang, Guei-Jang |
---|---|
論文名稱: |
水平底板鰭片陣列自然對流散熱之特性與改善 The Characteristics and Improvements of Natural Convection Heat Transfer from Horizontal Rectangular Fin Arrays |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: |
許文震
朱光馨 王啟川 楊建裕 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | 鰭片散熱 、最佳間距 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以暫態數值方法計算水平底板鰭片陣列之自然對流散熱性能,計算結果顯示尺寸是影響其流場與自然熱對流係數相當重要的因素,文中所計算之鰭片陣列尺寸為L=56~500mm、H=6.4~38mm、S=6.4~20mm。固定間距S=6.4mm之鰭片陣列當長度由56mm逐漸增加時會使得鰭片間之流場由穩態的single chimney逐漸轉變為具動態特性之sliding chimney流場,這是由於鰭片長度增加使得散熱氣流流經鰭片之時間加長,因而氣流得以在鰭片之間充分受熱並往鰭片陣列內部聚集同時往上流動,而鰭片陣列內部也因這些充分受熱的氣流導致其局部熱對流係數遠低於鰭片末端之外側區域。此外這些因熱浮力往上流動的氣流也同時引入鰭片上方相對較冷之氣流進入鰭片間而形成具動態特性之sliding chimney流場,這使得鰭片陣列整體自然熱對流係數出現震盪的情況。本文發現使用穩態數值方法計算具sliding chimney流場之鰭片陣列會低估其熱對流係數且不易收斂,因此需使用暫態的方法以得到收斂的結果並採取其時間平均值來決定熱對流係數,以此方式進行之自然熱對流計算可符合文獻以實驗數據所歸納出之經驗式,另外在鰭片陣列尺寸對散熱性能影響之探討上也顯示計算結果之趨勢符合文獻試驗結果。本文由數值結果發現大尺寸之鰭片陣列常因內部散熱不佳而呈現低熱對流係數,為改善此一缺點,本文提出在底板位置開口引進鰭片下方冷氣流以改善散熱效能,由於縮短了散熱氣流路徑總長,可大幅度提高局部熱對流係數。計算結果顯示底板開口靠近鰭片陣列內部之改善效果較靠外側為佳,採用較小而均布之開口改善效果最好,所計算之自然熱對流係數可達未開口鰭片之2.7倍。
This work numerically analyzes the dynamic behavior of natural convection from horizontal rectangular fin arrays. A parametric study is made using a 3-D unsteady model for fin lengths of L = 56500 mm, fin heights of H = 6.438 mm, and fin spacing of S = 6.420 mm. With an increasing L, the flow pattern evolves from a steady single-chimney to an oscillating sliding-chimney flow in which cold air is partly drawn downward from the upper ambience. The average convection heat transfer coefficient decreases with increasing fin length. For an intense sliding-chimney flow pattern from long and low fin arrays, an unsteady simulation yields higher average convection heat transfer coefficients than those using a steady-state simulation. The h–S relation exhibits a steep drop when S is narrowed below a threshold, which is larger for lower and longer fins. The optimum fin spacing Sopt occurs near the threshold S, below which the benefit of increasing heat transfer area surrenders to the decrease of h caused by excessive viscous drag. The predicted dependence of Sopt on H and L agrees well with experimental results and is explained based on numerical results of flow and heat transfer characteristics. The present predictions of Nu agree well with the correlations in the literature which use L/2 or S as the characteristic lengths.
For horizontal rectangular fin arrays with length L 200 mm, the overall convection heat transfer coefficients are quite low because the inner surfaces of the long fin arrays are poorly ventilated with cold surrounding air. In this study, we introduce perforations through the fin base to draw cold air directly from below the fin base. The perforations, especially locating in the inner region, improve ventilation and heat transfer performance significantly. The conditions with more but shorter perforations exhibit the most significant improvement in heat transfer. The overall heat transfer coefficients with short and distributed perforations, whose total perforated length equals L/2, can be as large as 2.7 times that without perforations.
[1] C.W. Leung, S.D. Probert, Heat exchanger performance: effect of orientation, Appl. Energy 33 (1989) 235-252.
[2] X. Luo, W. Xiong, T. Cheng, S. Liu, Design and optimization of horizontally-located plate fin heat sink for high power LED street lamp, The 59th Electronic Components and Technology Conference, San Diego, CA, USA, May 26–29, 2009.
[3] F.P. Incropera, Convection heat transfer in electronic equipment cooling, ASME J. Heat Transfer 110 (1988) 1097–1111.
[4] W. Elenbaas, Heat dissipation of parallel plates by free convection, Physica, 9 (1942) 1–28.
[5] J.R. Bodoia, J.F. Osterle, The development of free convection between heated vertical plates, ASME J. Heat Transfer 84 (1962) 40–44.
[6] K.E. Starner, H.N. McManus Jr., An experimental investigation of free convection heat transfer from rectangular-fin arrays, ASME J. Heat Transfer 85 (1963) 273–278.
[7] J.R. Welling, C.B. Wooldridge, Free convection heat transfer coefficients from rectangular vertical fins, ASME J. Heat Transfer 87 (1965) 439–444.
[8] A. Bar-Cohen, W.M. Rohsenow, Thermally optimum spacing of vertical, natural convection cooled, parallel plates, ASME J. Heat Transfer 106 (1984) 116-123.
[9] D.W. Van de Pol, J.K. Tierney, Free convection Nusselt number for vertical U-shaped channels, ASME J. Heat Transfer 95 (1973) 542-543.
[10] D.W. Van de Pol, J.K. Tierney, Free convection heat transfer from vertical fin-Arrays, IEEE Transactions on Parts, Hybrids, and Packaging 10 (1974) 267–271.
[11] J.C. Shyu, K.W. Hsu, C.C. Wang, Thermal characterization of shrouded plate fin array on an LED backlight panel, Appl. Therm. Eng. 31 (2011) 2909–2915.
[12] F. Harahap, H.N. McManus Jr., Natural convection heat transfer from horizontal rectangular fin arrays, ASME J. Heat Transfer 89 (1967) pp. 32–38.
[13] C.D. Jones, L.F. Smith, Optimum arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer, ASME J. Heat Transfer 92 (1970) 6–10.
[14] H. Yüncü, G. Anbar, An experimental investigation on performance of rectangular fins on a horizontal base in free convection heat transfer, Heat Mass Transfer 33 (1998) 507–514.
[15] C.W. Leung, S.D. Probert, M.J. Shilston, Heat exchanger: optimal separation for vertical rectangular fins protruding from a vertical rectangular base, Appl. Energy 19 (1985) 77-85.
[16] C.W. Leung, S.D. Probert, M.J. Shilston, Heat exchanger design: thermal performances of rectangular fins protruding from vertical or horizontal rectangular bases, Appl. Energy 20 (1985) 123–140.
[17] C.W. Leung, S.D. Probert, M.J. Shilston, Heat transfer performances of vertical rectangular fins protruding from rectangular bases: effect of fin length, Appl. Energy 22 (1986) 313–318.
[18] C.W. Leung, S.D. Probert, Heat exchanger design: optimal length of an array of uniformly-spaced vertical rectangular fins protruding upwards from a horizontal base, Appl. Energy 30 (1988) 29–35.
[19] S. Baskaya, M. Sivrioglu, M. Ozek, Parametric study of natural convection heat transfer from horizontal rectangular fin arrays, Int. J. Therm. Sci. 39 (2000) 797–805.
[20] M. Mobedi, H. Yüncü, A three dimensional numerical study on natural convection heat transfer from short horizontal rectangular fin array, Heat Mass Transfer 39 (2003) 267–275.
[21] L. Dialameh, M. Yaghoubi, O. Abouali, Natural convection from an array of horizontal rectangular thick fins with short length, Appl. Therm. Eng. 28 (2008) 2371–2379.
[22] A.B. Ganorkar, V.M. Kriplani, Review of heat transfer enhancement in different types of extended surfaces, Int. J. Eng. Sci. Tech. 3 (2011) 3304–3313.
[23] X.R. Meng, X.L. Ma, J.F. Lu, X.L. Wei, A study on improving in Natural convection heat transfer for heat sink of high power LEDs, 2010 Int. Conference on Electrical Engineering and Automatic Control.
[24] ANSYS FLUENT 12.0 Theory Guide, ANSYS Inc, 2009.
[25] R.I. Issa, Solution of the implicitly discretized fluid flow equations by operator splitting, J. Comput. Phys. 62 (1986) 40–65.
[26] J.H. Ferziger, M. Peric, Computational methods for fluid dynamics, 3rd ed. Springer 2002.
[27] I.E. Barton, Comparison of SIMPLE- and PISO-type algorithms for transient flows, Int. J. Numerical Methods in Fluids, 26 (1998) 459–483.