研究生: |
張彧喆 Chang, Yu-Che |
---|---|
論文名稱: |
錸金屬催化含氮雜環之碳-氫鍵烷基化及烯基化反應 Rhenium(I)-Catalyzed Direct C-H Alkylation and Alkenylation of Nitrogen Containing Heterocycles |
指導教授: |
鄭建鴻
Cheng, Chien-Hong |
口試委員: |
蔡易州
Tsai, Yi-Chou 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 231 |
中文關鍵詞: | 錸金屬催化 、碳-氫鍵活化 、烷基化反應 、烯基化反應 |
外文關鍵詞: | Rhenium(I)-Catalyzed, C-H activation, Alkylation, Alkenylation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳-碳多重鍵的合成在有機化學中一直是非常重要且熱門的研究方向。近年來,過渡金屬催化碳-氫鍵活化反應的發展在該領域更為有效率且符合原子經濟(atom economy)。雖然3d與4d過渡金屬如鈷、鐵、鎳、銠、釕、鈀等已被廣泛研究,但5d過渡金屬如銥、錸等卻顯為開發。因此,本論文主要探討以錸金屬作為催化劑活化含氮雜環化合物之碳-氫鍵與烯類、炔類化合物合成烷基化(alkylation)與烯基化(alkenylation)產物。此合成方法藉由微調反應溫度與時間的情況下,便可有效合成烷基化與烯基化產物,並具有非常優異的立體選擇性。在過去未有任何過渡金屬達成此成果。另外,本研究也針對錸金屬催化碳—氫鍵活化反應之反應機構進行研究,以電噴灑游離質譜技術(ESI-MS,electrospray ionization mass spectroscopy)偵測錸金屬碳—氫鍵活化五元環中間體(rhenium metallacycle)。
Hydroarylation of carbon-carbon multiple bonds via transition metal-catalyzed directed C¬¬-H bond activation provides the alkenylated and alkylated heterocycles with a higher atom economy. Notably, this protocol has been considered to be an important strategy to synthesize functionalized heterocycles. Hydroarylation reactions have been studied well with several 3d- and 4d-transition metals; However, the reactivity of 5d-transition metals, particularly, rhenium has been rarely discussed in this regard. Herein, we report a catalytic reactivity of Re(I) complexes for the hydroarylation reactions of bicyclic alkenes, terminal and internal alkynes via directed C-H bond activation strategy. This reaction features a very simple reaction condition, including relatively low amount of catalyst, short reaction time, broad substrates scope, and excellent selectivity. Moreover, the proposed mechanism is strongly supported by the detection of a five-membered rhenacycle intermediate by ESI-MS.
[1] Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728-2735.
[2] Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529-531.
[3] Matsubara, T.; Koga, N.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc. 1998, 120, 12692-12693.
[4] Matsubara, T.; Koga, N.; Musaev, D. G.; Morokuma, K. Organometallics 2000, 19, 2318-2329.
[5] Kakiuchi, F.; Yamauchi, M.; Chatani, N.; Murai, S. Chem. Lett. 1996, 25, 111-112.
[6] Kakiuchi, F.; Sato, T.; Yamauchi, M.; Chatani, N.; Murai, S. Chem. Lett. 1999, 28, 19-20.
[7] Kakiuchi, F.; Sonoda, M.; Tsujimoto, T.; Chatani, N.; Murai, S. Chem. Lett. 1999, 28, 1083-1084.
[8] Kakiuchi, F.; Tsujimoto, T.; Sonoda, M.; Chatani, N.; Murai, S. Synlett 2001, 2001, 0948-0951.
[9] Fumitoshi, K.; Hisashi, O.; Motohiro, S.; Naoto, C.; Shinji, M. Chem. Lett. 2001, 30, 918-919.
[10] Fumitoshi, K.; Taisuke, S.; Kimitaka, I.; Naoto, C.; Shinji, M. Chem. Lett. 2001, 30, 386-387.
[11] Jun, C.-H.; Hong, J.-B.; Kim, Y.-H.; Chung, K.-Y. Angew. Chem. Int. Ed. 2000, 39, 3440-3442.
[12] Dorta, R.; Togni, A., Chem. Commun. 2003, 760-761.
[13] Martinez, R.; Chevalier, R.; Darses, S.; Genet, J.-P. Angew. Chem. Int. Ed. 2006, 45, 8232-8235.
[14] Carrión, M. C.; Cole-Hamilton, D. J. Chem. Commun. 2006, 4527-4529.
[15] Kozhushkov, S. I.; Yufit, D. S.; Ackermann, L. Org. Lett. 2008, 10, 3409-3412.
[16] Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y.-K.; Endo, K.; Shibata, T. J. Organomet. Chem. 2008, 693, 3939-3942.
[17] Gao, K.; Yoshikai, N. J. Am. Chem. Soc. 2011, 133, 400-402.
[18] Ilies, L.; Chen, Q.; Zeng, X.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 5221-5223.
[19] Schinkel, M.; Marek, I.; Ackermann, L. Angew. Chem. Int. Ed. 2013, 52, 3977-3980.
[20] Lee, P.-S.; Yoshikai, N. Angew. Chem. Int. Ed. 2013, 52, 1240-1244.
[21] Dong, J.; Lee, P.-S.; Yoshikai, N. Chem. Lett. 2013, 42, 1140-1142.
[22] Shibata, K.; Yamaguchi, T.; Chatani, N. Org. Lett. 2015, 17, 3584-3587.
[23] Shirai, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2015, 54, 9894-9897.
[24] Lim, Y.-G.; Lee, K.-H.; Koo, B. T.; Kang, J.-B. Tetrahedron Lett. 2001, 42, 7609-7612.
[25] Cheng, K.; Yao, B.; Zhao, J.; Zhang, Y. Org. Lett. 2008, 10, 5309-5312.
[26] Gao, K.; Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2010, 132, 12249-12251.
[27] Ding, Z.; Yoshikai, N. Angew. Chem. Int. Ed. 2012, 51, 4698-4701.
[28] Liang, L.; Fu, S.; Lin, D.; Zhang, X.-Q.; Deng, Y.; Jiang, H.; Zeng, W. J. Org. Chem. 2014, 79, 9472-9480.
[29] Shi, L.; Zhong, X.; She, H.; Lei, Z.; Li, F. Chem. Commun. 2015, 51, 7136-7139.
[30] Wang, S.; Hou, J.-T.; Feng, M.-L.; Zhang, X.-Z.; Chen, S.-Y.; Yu, X.-Q. Chem. Commun. 2016, 52, 2709-2712.
[31] Zhou, X.; Luo, Y.; Kong, L.; Xu, Y.; Zheng, G.; Lan, Y.; Li, X., ACS Catal. 2017, 7, 7296-7304.
[32] Sen, M.; Rajesh, N.; Emayavaramban, B.; Premkumar, J. R.; Sundararaju, B., Chem. – Eur. J. 2018, 24, 342-346.
[33] Kuninobu, Y.; Nishina, Y.; Shouho, M.; Takai, K. Angew. Chem. Int. Ed. 2006, 45, 2766-2768.
[34] Kuninobu, Y.; Matsuki, T.; Takai, K. J. Am. Chem. Soc. 2009, 131, 9914-9915.
[35] Kuninobu, Y.; Tokunaga, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2006, 128, 202-209.
[36] Kuninobu, Y.; Nishina, Y.; Nakagawa, C.; Takai, K. J. Am. Chem. Soc. 2006, 128, 12376-12377.
[37] Kuninobu, Y.; Matsuki, T.; Takai, K. Org. Lett. 2010, 12, 2948-2950.
[38] Geng, X.; Wang, C. Org. Lett. 2015, 17, 2434-2437.
[39] Kuninobu, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2005, 127, 13498-13499.
[40] Tang, Q.; Xia, D.; Jin, X.; Zhang, Q.; Sun, X.-Q.; Wang, C. J. Am. Chem. Soc. 2013, 135, 4628-4631.
[41] Jin, X.; Yang, X.; Yang, Y.; Wang, C. Org. Chem. Front. 2016, 3, 268-272.
[42] Wang, C.; Rueping, M. ChemCatChem 2018, 10, 2681-2685.