研究生: |
劉柏辰 Liu, Bo Chen |
---|---|
論文名稱: |
低成本自動化生物反應器實現細菌的抗藥性演化 A low cost automated bioreactor for evolution of bacteria under antibiotic drug selection |
指導教授: |
楊雅棠
Yang, Ya Tang |
口試委員: |
藍忠昱
Lan, Chung Yu 蔡伸隆 Tsai, Shen Long |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 生物反應器 、自動化 、抗藥性 、演化 |
外文關鍵詞: | bioreactor, automated, antibiotic, evolve |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在於製作一個有別於傳統的生物反應器,培養約10 ml菌液,小體積且低成本的自動化變型恆化器(Chemostat)。這個裝置是由市售的電子元件建構,如Arduinod板、發光二極體及微型幫浦等。整體的系統的運作皆由Arduino板自動化控制,利用發光二極體量測環境中細菌的光吸收值,即時觀察細菌的生長。並且,藉由微型幫浦持續輸入新的營養液與添加抗生素,同時依據細菌的生長狀況動態調整抗藥性濃度,使得細菌不斷演化為具有高抗生素抗藥性的突變細菌,這樣功能的裝置名稱為Morbidorstat。
We made a variant automated chemostat. The devices have small working volume of ~10 ml and low-cost different from the traditional bioreactor culture. The devices are built based on commercially available electronic components such as Ardunio board, light emitting diodes, and micropumps. The operation of the whole system is controlled with Arduino board automation. Using light emitting diodes measurement absorbance of bacteria in culture environment, observing the number of growth bacteria in real-time. Inject fresh medium and increase drug by micropump. Simultaneously, dynamically adjust the drug concentration according to growth of the bacteria. Allowing bacteria evolve mutant with high antibiotic resistance. The device we call the ’morbidostat’.
1. Levy, S. B., Marshall, B. Antibiotic resistance worldwide: causes, challenges, and responses, Nature Medicine, 10, pp. s122-s129 (2004).
2. Bryson, V. & Szybalski, W. Microbial selection. Science 116, 45–51 (1952).
3. Dragosits, M., Mattanovich D., Adaptive laboratory evolution - principles and applications for biotechnology, Microbial Cell Factory, 12, pp. 64, (2013).
4. Wang, M.M. et al. Tracking the in vivo evolution of multidrug resistance in Staphylococus aureus by whole genome sequencing. Pro. Natl. Acad. Sci., 104, 9451 (2007).
5. Zhang Q., Lambert G., Liao, D., Kim, H., Robin, K, Tung, C., Pourmand, Austin, R. H. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironment, Science, 333, 1764-1767, (2011).
6. Novick, A. & Szilard, L. Experiments with the Chemostat on spontaneous mutations of bacteria. Proc. Natl. Acad. Sci. U.S.A. 36, 708-719, (1950).
7. Balagadde, F.K., You, L., Hansen, C.L., Arnold, F.H., Quake, S.R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science. 309, 137-140 (2005).
8. Takahashi, C. N., Miller, A. W., Ekness, F., Dunham, M. J., Klavins, E. A low cost, customizable turbidostat for use in synthetic circuit characterization, ACS Synthetic Biology, doi. 10.1021, (2015).
9. Toprak, E. et al., Building a morbidostast: an automated continuous culture device for studying bacterial drug resistance under dynamically sustained drug inhibition, Nature Protocol, 8, 555-567, (2013).
10. Toprak, E. Veres, A, J.B. Mitchel, J. B., Hartl, D. L., Kishony, R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection, Nature Genetics, 44 101-106, (2012).
11. Rosenthal, A. Z., Michael B Elowitz, M. B. Following evolution of bacterial antibiotic resistance in real time, Nature Genetics, 44, 11-13, (2012).
12. Young, K. In vitro antibacterial resistance selection and quantitation, Current Protocols in Pharmacology, doi: 10.1002 (2006)
13. Flensburg, J. & Skold, O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur. J. Biochem. 162, 473-476 (1987).
14. Ohmae, E., Sasaki, Y., & Gekko, K. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase. J. Biochem. 130, 439-447 (2001).
15. Hsu, S. B., Waltman, P. E. Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J. Applied Math. 528-540 (1992).
16. Fu, W. et al., Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor, Journal of Biotechnology 161, 242-249, (2012).