簡易檢索 / 詳目顯示

研究生: 劉柏辰
Liu, Bo Chen
論文名稱: 低成本自動化生物反應器實現細菌的抗藥性演化
A low cost automated bioreactor for evolution of bacteria under antibiotic drug selection
指導教授: 楊雅棠
Yang, Ya Tang
口試委員: 藍忠昱
Lan, Chung Yu
蔡伸隆
Tsai, Shen Long
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 58
中文關鍵詞: 生物反應器自動化抗藥性演化
外文關鍵詞: bioreactor, automated, antibiotic, evolve
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在於製作一個有別於傳統的生物反應器,培養約10 ml菌液,小體積且低成本的自動化變型恆化器(Chemostat)。這個裝置是由市售的電子元件建構,如Arduinod板、發光二極體及微型幫浦等。整體的系統的運作皆由Arduino板自動化控制,利用發光二極體量測環境中細菌的光吸收值,即時觀察細菌的生長。並且,藉由微型幫浦持續輸入新的營養液與添加抗生素,同時依據細菌的生長狀況動態調整抗藥性濃度,使得細菌不斷演化為具有高抗生素抗藥性的突變細菌,這樣功能的裝置名稱為Morbidorstat。


    We made a variant automated chemostat. The devices have small working volume of ~10 ml and low-cost different from the traditional bioreactor culture. The devices are built based on commercially available electronic components such as Ardunio board, light emitting diodes, and micropumps. The operation of the whole system is controlled with Arduino board automation. Using light emitting diodes measurement absorbance of bacteria in culture environment, observing the number of growth bacteria in real-time. Inject fresh medium and increase drug by micropump. Simultaneously, dynamically adjust the drug concentration according to growth of the bacteria. Allowing bacteria evolve mutant with high antibiotic resistance. The device we call the ’morbidostat’.

    誌謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 VIII 一、緒論 1 1-1研究動機 1 1-2文獻回顧 2 1-2-1細菌培養與演化 2 1-2-2抗藥性篩選與檢測 4 1-2-3恆化器(Chemostat) 6 1-2-4恆濁器(Turbidostat) 7 1-2-5 Morbidorstat 8 二、材料及方法 10 2-1生長瓶製作 10 2-2貯存瓶製作 11 2-3系統架設 12 2-3-1 硬體系統 12 2-3-2玻璃瓶固定套筒製作 14 2-3-3磁石攪拌器 16 2-3-4微型幫浦 17 2-3-5 Arduino控制系統 18 2-4測試與校準二極體 19 三、實驗結果 20 3-1大腸桿菌樣品 20 3-2實驗前準備步驟 20 3-3系統參數 21 3-4培養結果 23 3-5 PCR定序結果 27 四、結論及討論 29 附錄 31 A-1 IC50及MIC測量步驟 31 A-2 PCR定序步驟 32 A-3 Arduino 程式碼 33 A-4 Arduino nRF24L01無線程式碼 41 傳送端 41 接收端 52 A-5 固定套筒與壓克力盒之Solidworks圖 55 參考文獻 57

    1. Levy, S. B., Marshall, B. Antibiotic resistance worldwide: causes, challenges, and responses, Nature Medicine, 10, pp. s122-s129 (2004).
    2. Bryson, V. & Szybalski, W. Microbial selection. Science 116, 45–51 (1952).
    3. Dragosits, M., Mattanovich D., Adaptive laboratory evolution - principles and applications for biotechnology, Microbial Cell Factory, 12, pp. 64, (2013).
    4. Wang, M.M. et al. Tracking the in vivo evolution of multidrug resistance in Staphylococus aureus by whole genome sequencing. Pro. Natl. Acad. Sci., 104, 9451 (2007).
    5. Zhang Q., Lambert G., Liao, D., Kim, H., Robin, K, Tung, C., Pourmand, Austin, R. H. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironment, Science, 333, 1764-1767, (2011).
    6. Novick, A. & Szilard, L. Experiments with the Chemostat on spontaneous mutations of bacteria. Proc. Natl. Acad. Sci. U.S.A. 36, 708-719, (1950).
    7. Balagadde, F.K., You, L., Hansen, C.L., Arnold, F.H., Quake, S.R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science. 309, 137-140 (2005).
    8. Takahashi, C. N., Miller, A. W., Ekness, F., Dunham, M. J., Klavins, E. A low cost, customizable turbidostat for use in synthetic circuit characterization, ACS Synthetic Biology, doi. 10.1021, (2015).
    9. Toprak, E. et al., Building a morbidostast: an automated continuous culture device for studying bacterial drug resistance under dynamically sustained drug inhibition, Nature Protocol, 8, 555-567, (2013).
    10. Toprak, E. Veres, A, J.B. Mitchel, J. B., Hartl, D. L., Kishony, R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection, Nature Genetics, 44 101-106, (2012).
    11. Rosenthal, A. Z., Michael B Elowitz, M. B. Following evolution of bacterial antibiotic resistance in real time, Nature Genetics, 44, 11-13, (2012).
    12. Young, K. In vitro antibacterial resistance selection and quantitation, Current Protocols in Pharmacology, doi: 10.1002 (2006)
    13. Flensburg, J. & Skold, O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur. J. Biochem. 162, 473-476 (1987).
    14. Ohmae, E., Sasaki, Y., & Gekko, K. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase. J. Biochem. 130, 439-447 (2001).
    15. Hsu, S. B., Waltman, P. E. Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J. Applied Math. 528-540 (1992).
    16. Fu, W. et al., Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor, Journal of Biotechnology 161, 242-249, (2012).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE