研究生: |
林信誠 |
---|---|
論文名稱: |
摻雜鐵或鋅磷化銦高壓下之研究 Study of Iron or Zinc doped Indium Phosphide under High Pressure |
指導教授: | 林志明 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
中文關鍵詞: | 磷化銦 、摻雜 、高壓 、相變 |
外文關鍵詞: | InP, doping, high pressure, phase transition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用角度擴散X光繞射 (angle-dispersive X-Ray diffraction, ADXRD) 及拉曼光譜 (Raman spectroscopy) 探討磷化銦摻雜鐵(InP:Fe) 及磷化銦摻雜鋅 (InP:Zn) 高壓下物理特性。摻雜機制的不同造成壓力對InP:Fe 及InP:Zn有不同程度的影響。另外,透過X光吸收近邊緣結構(X-Ray absorption near-edge structure, XANES),確認InP:Fe中鐵的氧化價數為三價。
結果顯示,InP:Fe及InP:Zn在高壓下皆由閃鋅礦結構 (zinc-blende) 轉變為氯化鈉 (rock-salt) 結構並金屬化。由ADXRD數據發現InP:Fe與InP:Zn 相轉變開始壓力分別為8.2(2)和8.6(1) GPa,InP:Fe閃鋅礦結構與氯化鈉結構重量百分率交換壓力與相變結束之壓力分別為10.4(1)及16.0(2) GPa皆較InP:Zn的9.2(1)及14.1(2) GPa高。InP:Fe及InP:Zn拉曼光譜所觀察相變壓力同為8.8(1) GPa,但InP:Fe金屬化壓力為11.6(2) GPa較InP:Zn之14.5(2) GPa低,此因摻雜機制與摻雜元素不同所造成。InP:Fe為鐵三價鐵取代銦的位置與磷鍵結。InP:Zn之摻雜機制為鋅不取代磷的位置而與磷化銦中磷位置的空缺(vacancy)形成鍵結。
Using ADXRD (angle-dispersive X-Ray diffraction) and Raman spectroscopy, discussed physical properties of Iron doped indium phosphide (InP:Fe) and Zinc doped indium phosphide (InP:Zn) under high pressure. Because different doping mechanism, cause the pressure have different degrees of impact on InP:Fe and InP:Zn. In addition, Using XANES(X-Ray absorption near-edge structure) to confirm the valence of Iron is trivalent ions forming ionic bonds with phosphorous in InP:Fe. The results showed that both the InP:Fe and InP:Zn are transform from zincblende structure to rock-salt structure and metallic under high pressure. Through the ADXRD data can found the begin phase transition pressure is almost the same with InP:Fe and InP:Zn, at 8.2(2) GPa and 8.6(1) GPa, respectively. The Weight Fraction change pressure and phase transition finish pressure of InP:Fe is at 10.4(1) and 16.0(2) GPa which is higher than InP:Zn at9.2(1) and 14.1(2) GPa. In Raman spectroscopy can observed the begin phase transition pressure of InP:Fe and InP:Zn is the same at 8.8(1) GPa, but the transition to metallic phase pressure of InP:Fe is at 11.6(2) GPa which is lower than InP:Zn at 14.5(2) GPa, the result is because of the different doping mechanism and dopping element. The doping mechanism of InP:Fe is that the iron forming trivalent ions and replace the indium to form ionic bonds with phosphorous. The doping mechanism of InP:Zn is that the zinc forming ionic bonds with vacancy of phosphorous.
[1] G. Busch, Early history of the physics and chemistry of semiconductors, Eur. J. Phys, 10 (1989) 254–263.
[2] E.B. L. Hoddeson, J. Teichmann, and S. Weart, Out of the Crystal Maze: Chapters in the History of Solid State Physics, New York: Oxford University Press, (1992).
[3] 高銘盛, 基礎電子學, 滄海書局, (2003).
[4] 胡裕民, III-V 稀磁性半導體薄膜之研究與發展, 物理雙月刊, 24 (2004) 587-598.
[5] A.T.a. H.Koelsch, Studien über das Indium, Z. Anorg. Chem., 66 (1910) 288-321.
[6] J.R.M. I. Vurgaftman, and L. R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, JOURNAL OF APPLIED PHYSICS, 89 (2001).
[7] Indium phosphide (InP), electrical and thermal conductivity, carrier concentrations, in: O. Madelung, U. Rössler, M. Schulz (Eds.) Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties, Springer Berlin Heidelberg, 2002, pp. 1-11.
[8] COD(Crystallography Open Database) ID: 1010146.
[9] ICSD(Inorganic Crystal Structure Database) ID:53104, (2002/04/01).
[10] S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, M.C. Amann, InP-Based Type-II Quantum-Well Lasers and LEDs, Ieee Journal Of Selected Topics In Quantum Electronics, 19 (2013).
[11] K.T. Shiu, J. Zimmerman, H.Y. Wang, S.R. Forrest, Ultrathin film, high specific power InP solar cells on flexible plastic substrates, Applied Physics Letters, 95 (2009).
[12] J.H. Park, J. Kirch, L.J. Mawst, C.-C. Liu, P.F. Nealey, T.F. Kuech, Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography, Applied Physics Letters, 95 (2009) -.
[13] C.-I.K. Edward-Yi Chang , Heng-Tung Hsu , Che-Yang Chiang , and Yasuyuki Miyamoto, InAs Thin-Channel High-Electron-Mobility Transistors with Very High Current-Gain Cutoff Frequency for Emerging Submillimeter-Wave Applications, Applied Physics Express, 6 (2013) 034001.
[14] A.P. Howard, B ; Hayakawa, Y ,Hayakawa; Anderson, TJ ,Anderson; C , Blaauw; AJ , SpringThorpe, Application of the point-defect analysis technique to zinc doping of MOCVD indium phosphide, SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 18 (2003) 723-728.
[15] G.W.Iseler, Resistivity of Bulk InP, INSPEC, INSPEC, 1990.
[16] J.T. J. PRIETZEL, K. EUSTERHUES & D. EICHERT, J. Canton, Iron speciation in soils and soil aggregates by synchrotron-based X-ray microspectroscopy (XANES, m-XANES), European Journal of Soil Science, 58 (2007) 1027-1041.
[17] A.S. F. Meirer, G. Pepponi, C. Streli, T. Homma, P. Pianetta, Synchrotron radiation-induced total reflection X-ray fluorescence analysis, Trends in Analytical Chemistry, 29 (2010) 479-496.
[18] J. Canton, Experiments and Observations on the Compressibility of Water and Some Other Fluids, Philosophical Transactions, 54 (1764) 261-262.
[19] 黃怡禎, 探討地球內部的利器──鑽石高壓砧, 科學發展, 358 (2002) 34-39.
[20] 林志明、吳恭德、黃彥衡、湯茂竹、陳昌祈、李志浩、洪慈蓮, SPring-8 BL12B2超高壓X光吸收光譜實驗站之建立, 物理雙月刊, 26 (2004) 425-433.
[21] 余樹楨, 晶體之結構與性質, 渤海堂, (1989).
[22] F.T. Yoshikazu Mizuguchi, Shunsuke Tsuda, Takahide Yamaguchi, Yoshihiko Takano,, Superconductivity at 27K in tetragonal FeSe under high pressure, Appl. Phys. Lett, 93 (2008) 152505.
[23] H.G.D. S. Minomura, Pressure induced phase transitions in silicon, germanium and some III–V compounds, Journal of Physics and Chemistry of Solids, 23 (1962) 451-456.
[24] C.S.M.a.I.L. Spain, Equation of state of InP to 19 GPa, PHYSICAL REVIEW B, 35 (1987) 7520.
[25] D.L.N. N. E. Christensen, R. E. Alonso, and C. O. Rodriguez Solids under pressure. Ab initio theory, PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 211 (1999) 5-16.
[26] C.M.L.a.H.S.S. Y.T. Liu, The physical properties of S dopant in InP under high-pressure by ADX method, NSRRC Users Meeting, (2007).
[27] M.I. McMahon, R. J. Nelmes, N. G. Wright, and D. R. Allan, Proceedings of the Joint Conference of the AIRAPT/APS on High-Pressure Science and Technology, (1993).
[28] W. Wenju Zhang, XinluCheng ,, First-principles study of phase transition and thermodynamic properties of InP, PHYSICA B, 405 (2010) 4536-4540.
[29] G.L. E Bedel, R Carles, J P Redoules and J B Renucci, Raman investigation of the InP lattice dynamics, Journal of Physics C: Solid State Physics, 19 (1986) 1471-1479.
[30] Z.L. ZHENG Maojun, LI Guanghai & JIANG Zhi, Preparation and optical properties of composite thin films with embedded InP nanoparticles, Chinese Science Bulletin, 46 (2001).
[31] O.I.M.i. M. J. Seong, A. J. Nozik, and A. Mascarenhas, Size-dependent Raman study of InP quantum dots, APPLIED PHYSICS LETTERS, 82 (2003) 185-187.
[32] 林志明, 超高壓技術簡介-應用於半導體相變之研究, 物理雙月刊, 20 (1998) 600-606.
[33] 同步加速器光源, 國家同步輻射中心 / National Synchrotron Radiation Research Center, (2010).
[34] 李志甫、許益瑞、俞聖法、羅鳳君、李美儀、許瑛珍, 硬X 光吸收光譜在生命科學之應用Applications of Hard X-Ray Absorption Spectroscopy in Life Science, 科儀新知, 3 (2009) 32-33.
[35] 林麗娟, X光繞射原理及其應用, 工業材料, 86 (1994) 100-109.
[36] P.M. MARTIN, P); JIMENEZ, J (JIMENEZ, J); MARTIN, E (MARTIN, E); TORRES, A (TORRES, A), RAMAN ASSESSMENT OF INP WAFERS, I E E E, NEW YORK, 1992.
[37] A.L. J. Hanuza , J. Misiewicz, Molecular model of lattice vibrations in Zn3P2, Vibrational Spectroscopy, 17 (1998) 93-103.
[38] C.H. Klein , C , S, Manual of Mineralogy, after J. D. Dana, 20th Edition, 1985.