簡易檢索 / 詳目顯示

研究生: 卜宏毅
Pu, Hung-Yi
論文名稱: 在低吸積率時黑洞相對論性噴流的形成
Formation of Black Hole Relativistic Jets at Low Accretion Rate
指導教授: 張祥光
Chang, Hsiang-Kuang
廣谷幸一
Kouichi Hirotani
口試委員: 許瑞榮
高仲明
高文芳
江國興
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 83
中文關鍵詞: 黑洞物理吸積盤磁流體力學X射線雙星活躍星系核磁場
外文關鍵詞: black hole physics, accretion disk, magnetohydrodynamics, X-ray binaries, active galactic nuclei, magnetic field
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 觀測上黑洞吸積系統(accreting black hole systems)的光度(Luminosity),L,與電波輻射(radio emission)的互相關聯暗示了黑洞吸積盤(accretion disk)與噴流有偶合關係。假設黑洞相對論性噴流(relativistic jets)是藉由旋轉黑洞的轉動動能提供能量,我們檢視了當黑洞吸積盤隨其光度(以愛丁頓光度(Eddington Liminosity),LEdd,為單位)變化而改變種類時,黑洞的能量是否能被抽取出來(產生噴流)。在此論文中,我們主要討論相對論性噴流為何能夠在吸積盤成為薄盤狀前產生(當L/LEdd 漸漸接近約0.01前)。經由相對論性流體力學(general relativistic magnetohydrodynamics)的討論,我們發現黑洞轉動能量容易在黑洞被一種混合外部薄盤(thin disk)及內部水平對流主導吸積流(advection-dominated accretion flow)的吸積盤所包圍時,經由"磁流體Penrose過程(MHD Penrose Process)"被抽取出來。這類混合薄盤與水平對流主導吸積流的吸積盤曾經被用來解釋黑洞X射線雙星(black hole X-ray binaries)和活躍星系核(active galactic nuclei)的光譜表現。我們的模型也解釋了為何射電光度與噴流速度兩者皆隨著X射線光度上升而增加。此外,我們提出關於為何當L/LEdd約等於0.01時噴流被抑制,以及為何在L/LEdd 大於 0.01和 L/LEdd 小於0.01時產生的噴流有不同的功率(power)和速度的可能解釋。我們建議,對於不同種類的吸積盤,在黑洞視像地平面(event horizon)附近,當吸積流速度從次音速到超音速時的吸積流幾何形狀(transonic flow geometry),以及被吸積盤束縛的大尺度磁場兩者對抽取黑洞轉動動能及噴流的產生有重要的影響。


    Observed correlations between the disk luminosity (L) and radio emission from accreting black hole (BH) systems indicate underlying couplings between BH accretion disk and jet. Assuming relativistic jets are launched at the expense of the rotational energy of spinning BHs, we examine whether the BH energy can be extracted outward when the accretion disk type varies with L/LEdd, where LEdd
    is the Eddingtion luminosity. In this thesis, we mainly focus on why relativistic jet is launched before the disk is dominated by the thin disk type (before L/LEdd approaches the value ∼ 0.01), as inferred from observation. Considering the general relativistic magnetohydrodynamics (MHD), we found the extraction of BH energy via the “MHD Penrose process” (and hence the relativistic jet)can preferentially take place when the BH is surrounded by a disk which consists a (outer) thin disk
    and an (inner) advection-dominated flow. Such combined disk has been inferred from the spectra of both BH X-ray binaries and active galactic nuclei. Our model also consistently explains why both the radio luminosity and jet speed increase with increasing X-ray luminosity. In addition, we propose possible explanations why jet are quenched at when L/LEdd ∼ 0.01 and why the jets launched when L/LEdd > 0.01 has different jet power and jet speed than those launched when L/LEdd < 0.01. It is suggested that, for different types of accretion disks, both the transonic flow geometry near the horizon, and the large–scale magnetic field confined by the disk, play essential roles in affecting the extraction of BH rotational energy and hence the jet formation.

    1 Introduction 1.1 Black Hole Disk-Jet Coupling: Observation 1.2 Overview of Black Hole Accretion Disk Theories 1.3 Overview of Relativistic Jet Formation Theories 1.4 The Transonic Nature of the Accretion Flow 1.5 MHD Flows around a Rotating Black Hole 1.5.1 The Relativistic Bernoulli Equation 1.5.2 The Cold Limit 1.5.3 Separation Point 1.5.4 Light Surfaces 1.5.5 Critical Points 1.5.6 Negative Energy Flow 1.5.7 Outward Energy Flux 1.5.8 Relativistic Jet Formation Theories– Revisit 2 Formation of Relativistic Jet at Low Accretion Rate 2.1 Overview of the Model 2.2 Assumptions 2.3 Method 2.3.1 Estimating the Field Strength and the Mass Loading 2.3.2 Solving the Relativistic Bernoulli Equation for the Location of the Alfven Point 2.4 Results and Discussion 2.4.1 Results 2.4.2 Universal Paradigm of Black Hole Disk-Jet Coupling at Low Accretion Rate 2.4.3 Universal Paradigm of Black Hole Disk-Jet Coupling at Low Accretion Rate 2.4.4 The Estimated Speed of Ergospheric Jet 2.4.5 Validity of the Model 3 Outlook 3.1 Quenching of Black Hole relativistic Jet: a Possible Reason 3.1.1 The Transonic Flow Geometry of a Thin Disk 3.1.2 Universal Paradigm of Black Hole Disk-Jet Coupling at Low Accretion Rate– Revisited 3.2 Two Types of Ergospheric Jet 3.2.1 Jet Power 3.2.2 Jet Speed 3.2.3 The Dichotomy of Fanaroff-Riley I and Fanaroff-Riley II Galaxies 4 Summary A Electromagnetic Counter Torque induced by the Frame Dragging Effect B Analytical Solution of the Accretion Disks C Parameterized the Large-Scale Magnetic Field Strength D Unifying the Disk Solutions on the aurface density – accretion rate Plane D.1 Optically Thick Solutions D.1.1 Assumptions D.1.2 The Energy Equation D.1.3 Solving the “S” curve D.2 Optically Thin Solutions

    Abramowicz, M. A., Czerny, B., Lasota, J. P., & Szuszkiewicz, E. 1988, Astrophysical Journal, 332, 646

    Abramowicz, M. A., & Zurek, W. H. 1981, Astrophysical Journal, 246, 314

    Abramowicz, M. A., Chen, X., Kato, S., Lasota, J.-P., & Regev, O. 1995, Astrophysical Journal Letters, 438, L37

    Abramowicz, M. A. 1998, in Theory of black hole accretion discs,, Physics of black hole accretion,
    ed. M. A. Abramowicz, G. Bjornsson, & J. E. Pringle (Cambridge: Cambridge Univ. Press), 50

    Abramowicz, M. A., Bj¨ornsson, G., & Pringle, J. E. 1999, Theory of Black Hole Accretion Discs, ed.
    Marek A. Abramowicz and Gunnlaugur Bjornsson and James E. Pringle (Cambridge: Cambridge Univ. Press)

    Abramowicz, M. A., Jaroszy´nski, M., Kato, S., et al. 2010, Astronomy & Astrophysics, 521, A15

    Blandford, R. D., & Payne, D. G. 1982, Monthly Notices of the Royal Astronomical Society, 199, 883

    Best, P. N., & Heckman, T. M. 2012, Monthly Notices of the Royal Astronomical Society, 421, 1569

    Bicknell, G. V. 1985, Proceedings of the Astronomical Society of Australia, 6, 130

    Blandford, R. D., & Znajek, R. L. 1977, Monthly Notices of the Royal Astronomical Society, 179,433

    Camenzind, M. 1986a, Astronomy & Astrophysics, 156, 137

    Camenzind, M. 1986b, Astronomy & Astrophysics, 162, 32

    Camenzind, M. 1987, Astronomy & Astrophysics, 184, 341

    Chiaberge, M., & Marconi, A. 2011, Monthly Notices of the Royal Astronomical Society, 416, 917

    Chen, X., Abramowicz, M. A., Lasota, J.-P., Narayan, R., &Yi, I. 1995, Astrophysical Journal Letters,443, L61

    De Villiers, J.-P., Hawley, J. F., & Krolik, J. H. 2003, Astrophysical Journal, 599, 1238

    Esin, A. A., McClintock, J. E., & Narayan, R. 1997, Astrophysical Journal, 489, 865

    Falcke, H., K¨ording, E., & Markoff, S. 2004, Astronomy & Astrophysics, 414, 895

    Fanaroff, B. L., & Riley, J. M. 1974, Monthly Notices of the Royal Astronomical Society, 167, 31P

    Fender, R. P., Belloni, T. M., & Gallo, E. 2004, Monthly Notices of the Royal Astronomical Society,
    355, 1105

    Ferreira, J., Petrucci, P.-O., Henri, G., Saug´e, L., & Pelletier, G. 2006, Astronomy & Astrophysics,
    447, 813

    Gallo, E., Fender, R. P., & Pooley, G. G. 2003, Monthly Notices of the Royal Astronomical Society,344, 60

    Gammie, C. F., & Popham, R. 1998, Astrophysical Journal, 498, 313

    Gu, W.-M., Xue, L., Liu, T., & Lu, J.-F. 2009, Publications of the Astronomical Society of Japan, 61,1313
    Ghisellini, G., & Celotti, A. 2001, Astronomy & Astrophysics, 379, L1

    Ghisellini, G., Tavecchio, F., Foschini, L., & Ghirlanda, G. 2011, Monthly Notices of the Royal Astronomical Society, 414, 2674

    Hirotani, K., Takahashi, M., Nitta, S.-Y., & Tomimatsu, A. 1992, Astrophysical Journal, 386, 455

    Honma, F. 1996, Publications of the Astronomical Society of Japan, 48, 77

    Igumenshchev, I. V., Chen, X., & Abramowicz, M. A. 1996, Monthly Notices of the Royal Astronomical Society, 278, 236

    Igumenshchev, I. V. 2008, Astrophysical Journal, 677, 317

    Igumenshchev, I. V., Narayan, R., & Abramowicz, M. A. 2003, Astrophysical Journal, 592, 1042

    Kato, S., & Nakamura, K. E. 1998, Publications of the Astronomical Society of Japan, 50, 559

    Kato, S., Fukue, J., & Mineshige, S. 2008, Black-Hole Accretion Disks — Towards a New Paradigm (Kyoto: Kyoto Univ. Press)

    Kawakatu, N., Nagao, T., & Woo, J.-H. 2009, Astrophysical Journal, 693, 1686

    King, A. L., Miller, J. M., Cackett, E. M., et al. 2011, Astrophysical Journal, 729, 19

    Koide, S., Shibata, K., Kudoh, T., & Meier, D. L. 2002, Science, 295, 1688

    Komissarov, S. S. 2005, Monthly Notices of the Royal Astronomical Society, 359, 801

    Ledlow, M. J., & Owen, F. N. 1996, Astronomical Journal, 112, 9

    Liu, Y., Jiang, D. R., & Gu, M. F. 2006, Astrophysical Journal, 637, 669

    Livio, M., Ogilvie, G. I., & Pringle, J. E. 1999, Astrophysical Journal, 512, 100

    Maccarone, T. J., Gallo, E., & Fender, R. 2003, Monthly Notices of the Royal Astronomical Society,345, L19

    MacDonald, D., & Thorne, K. S. 1982, Monthly Notices of the Royal Astronomical Society, 198, 345

    Manmoto, T., Kato, S., Nakamura, K. E., & Narayan, R. 2000, Astrophysical Journal, 529, 127

    McClintock, J. E., & Remillard, R. A. 2006, Compact stellar X-ray sources, p157

    McKinney, J. C., Tchekhovskoy, A., & Blandford, R. D. 2012, Monthly Notices of the Royal Astronomical Society, 423,3083

    Meier, D. L. 2005, APSS, 300, 55

    Merloni, A., Heinz, S., & di Matteo, T. 2003, Monthly Notices of the Royal Astronomical Society,345, 1057

    Mignone, A., Bodo, G., Massaglia, S., et al. 2007, Astrophysical Journal Supplement Series, 170, 228

    Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, San Francisco: W.H. Freeman and Co., 1973

    Narayan, R., & Yi, I. 1994, Astrophysical Journal Letters, 428, L13

    Narayan, R., & Yi, I. 1995, Astrophysical Journal, 452, 710

    Narayan, R., Kato, S., & Honma, F. 1997, Astrophysical Journal, 476, 49

    Narayan, R., McClintock, J. E., & Yi, I. 1996, Astrophysical Journal, 457, 821

    Narayan, R., Mahadevan, E., Quataert, 1998, in Theory of black hole accretion discs, Accretion
    Around Black Holes, ed. Abramowicz, M. A., Bjornsson, G. & Pringle, J. E. (Cambridge: Cambridge Univ. Press), 148

    Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. 2003, Publications of the Astronomical Society of Japan, 55, L69

    Novikov, I. D., & Thorne, K. S. 1973, in Black Holes, ed. C. DeWitt-Morette & B. S. DeWitt (New York: Gordon & Breach), 343

    Paczynsky, B., & Wiita, P. J. 1980, Astronomy & Astrophysics, 88, 23

    Penrose, R. 1969, Nuovo Cimento Riv. Ser., 1, 252

    Punsly, B., Igumenshchev, I. V., & Hirose, S. 2009, Astrophysical Journal, 704, 1065

    Remillard, R. A., & McClintock, J. E. 2006, Annual Review of Astronomy and Astrophysics, 44, 49

    Rothstein, D. M., & Lovelace, R. V. E. 2008, Astrophysical Journal, 677, 1221

    Sadowski, A. 2009, Astrophysical Journal Supplement Series, 183, 171

    Sadowski, A., & Sikora, M. 2010, Astronomy & Astrophysics, 517, A18

    Sadowski, A., Abramowicz, M., Bursa, M., et al. 2011, Astronomy & Astrophysics, 527, A17

    Schutz, B. 2009, A First Course in General Relativity by Bernard Schutz. Cambridge University Press, 2009. ISBN: 9780521887052,

    Semenov, V., Dyadechkin, S., & Punsly, B. 2004, Science, 305, 978

    Shakura, N. I., & Sunyaev, R. A. 1973, Astronomy & Astrophysics, 24, 337

    Spruit, H. C., & Uzdensky, D. A. 2005, Astrophysical Journal, 629, 960

    Takahashi, M., Nitta, S., Tatematsu, Y., & Tomimatsu, A. 1990, Astrophysical Journal, 363, 206

    Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2011, Monthly Notices of the Royal Astronomical Society, 418, L79

    Trump, J. R., Impey, C. D., Kelly, B. C., et al. 2011, Astrophysical Journal, 733, 60

    Urry, C. M., & Padovani, P. 1995, Publications of the Astronomical Society of the Pacific, 107, 803

    Wu, Q., Cao, X., & Wang, D.-X. 2011, Astrophysical Journal, 735, 50

    Xu, Y.-D., Cao, X., & Wu, Q. 2009, Astrophysical Journal Letters, 694, L107

    Znajek, R. L. 1977, Monthly Notices of the Royal Astronomical Society, 179, 457

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE