簡易檢索 / 詳目顯示

研究生: 許嘉恩
Hsu, Chia-En
論文名稱: 胃幽門螺旋桿菌染色體分離調控蛋白Spo0J晶體結構與功能之研究
Structural and Functional Investigation of Spo0J from Helicobacter pylori
指導教授: 孫玉珠
Sun, Yuh-Ju
口試委員: 殷献生
Yin, Hsien-Sheng
蕭傳鐙
Hsiao, Chwan-Deng
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 48
中文關鍵詞: 胃幽門螺旋桿菌染色體分離調控蛋白
外文關鍵詞: Helicobacter pylori, Spo0J
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胃幽門螺旋桿菌是一種格蘭氏陰性微好氧的人類病原體,其感染胃黏膜層會導致胃炎及胃潰瘍等相關疾病。胃幽門螺旋桿菌26695編碼Hp1138基因,可轉譯出調控質體複製與分離的蛋白HpSpo0J,其為一種典型的螺旋轉螺旋(helix-turn-helix) DNA結合蛋白,具有專一性與parS DNA序列結合的能力。本論文計算出HpSpo0J與parS DNA結合之親和力並藉由X光繞射技術研究其晶體結構,有助於我們了解HpSpo0J在細菌質體分離過程中扮演的生物功能與分子機制。全長HpSpo0J與HpSpo0JN240(包含N端240個殘基)成功大量表現及純化,在水溶液中推測聚合型式分別為四聚體、二聚體。利用電泳遷移率(electrophoretic mobility shift)、螢光各向異性度(fluorescence anisotropy)進行DNA結合能力分析,並計算出HpSpo0JN240對parS DNA的解離常數為0.31±0.06 μM。此外,利用PEG3350為主沉澱劑成功得到HpSpo0JN240-parS complex晶體,並得到解析度為3.1Å繞射數據,其空間群 (space group) 為P21,晶格參數為a= 54.5 Å,b= 232.7 Å, c= 78.3 Å,β= 109.2°不對稱單元中含有四個分子,Vm值為2.5 Å3/Da,水溶液含量為51.5%。現階段,HpSpo0JN240-parS complex結構正在解析中。


    Helicobacter pylori is a spiral shape, microaerophilic Gram-negative human gastric pathogen. The colonization in stomach mucosa causes gastritis and peptic ulcer disease. The Hp1138 gene of Helicobacter pylori strain 26695 encodes a plasmid replication-partition related protein HpSpo0J, which is a classical helix-turn-helix DNA-binding protein that interacts with parS sequences (plasmid partition site of 16 bp). In order to understand the biological function and molecular mechanism of HpSpo0J involved in DNA segregation, we want to determine the DNA-binding affinity and the three-dimension structure of HpSpo0J-parS complex. In this study, full-length HpSpo0J and C-terminal truncated HpSpo0J (residues1-240, HpSpo0JN240) have been overexpressed and purified from E. coil, formed tetramer and dimer in solution. The DNA-binding activity of HpSpo0JN240 was performed by electrophoretic mobility shift assay and fluorescence anisotropy assay. The dissociation constant (Kd) of HpSpo0JN240-parS complex was calculated as 0.31±0.06 μM. HpSpo0JN240-parS complex was crystallized using PEG3350 as a precipitant and diffracted to 3.1Å resolution. HpSpo0JN240-parS complex crystal belongs to P21 space group with unit cell a= 54.5 Å, b= 232.7 Å, c= 78.3 Å, β= 109.2°. There are four molecules per asymmetric unit with Vm of 2.5 Å3/Da and solvent content of 51.5%. The structure determination of the HpSpo0JN240-parS complex is ongoing.

    Contents……………………………………………………………………………….I 中文摘要………………………………………….……...…………………………………..III Abstract………………………………………………………………………….…...IV 誌 謝………………………………………………………………….…………….V Chapter 1 Introduction………………………………………………………………1 1.1 Helicobacter pylori………………………………………………………………..1 1.2 parABS system…………………………………………………………………….2 1.3 parS sequences…………………………………………………………………….3 1.4 Characteristics of Spo0J…………………………………………………………...4 1.5 Other type Ia ParB DNA binding proteins………………………………………...6 Chapter 2 Materials and Methods 2.1 Cloning, protein expression and purification……………………………………...7 2.2 HpSpo0J-parS complex preparation………………………………………………8 2.3 Size-exclusion chromatography…………………………………………………...8 2.4 Electrophoretic mobility shift assay……………………………………………….9 2.5 Circular Dichroism…………………………………………………………….…10 2.6 Fluorescence anisotropy………………………………………………………….10 2.7 Crystallization……………………………………………………………………11 2.8 X-ray diffraction data collection and process…………………………………….11 2.9 Self-rotation functions……………………………………………………………12 Chapter 3 Results and Discussion 3.1 Multiple sequence alignment of Spo0Js………………………………………….13 3.2 Protein expression, purification, and characterization…………………………...14 3.2.1 Full-length HpSpo0J….……………………………………………………..14 3.2.2 C-terminal truncated HpSpo0J………………………………………………15 3.3. DNA binding activity of HpSpo0J………………………………………………16 3.4 HpSpo0JN240 specifically binds to oligonucleotide duplexes containing parS consensus sequence………………………………………………………………17 3.5. HpSpo0JN240-parS complex for crystallization………………………………….18 3.6 Protein crystals…………………………………………………………………...18 3.7 X-ray diffraction data collection and space group determination….…………….19 Chapter 4 Conclusion……………………….………………………………………21 Figures……………………………………….………………………………………23 Tables………………………………………..……………………………………….36 Appendix…………………………………………………………………………….44 References…………………………………………………………………………...45

    1. Goodwin, C. S. & Armstrong, J. A. (1990). Microbiological aspects of Helicobacter pylori (Campylobacter pylori). Eur J Clin Microbiol Infect Dis 9, 1-13.
    2. Danesh, J. (1999). Helicobacter pylori and gastric cancer: time for mega-trials? Br J Cancer 80, 927-9.
    3. Scheiman, J. M. & Cutler, A. F. (1999). Helicobacter pylori and gastric cancer. Am J Med 106, 222-6.
    4. Montecucco, C. & Rappuoli, R. (2001). Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol 2, 457-66.
    5. Tomb, J.-F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M. & Venter, J. C. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547.
    6. Bult, H. (1996). Nitric oxide and atherosclerosis: possible implications for therapy. Mol Med Today 2, 510-8.
    7. Hatakeyama, M. (2009). <i>Helicobacter pylori and gastric carcinogenesis. Journal of Gastroenterology 44, 239-248.
    8. Fleischmann, T. (1995). [Patients with stomas among the severely handicapped in our society]. Krankenpfl J 33, 142-5.
    9. Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, R. D., Bult, C. J., Kerlavage, A. R., Sutton, G., Kelley, J. M., Fritchman, R. D., Weidman, J. F., Small, K. V., Sandusky, M., Fuhrmann, J., Nguyen, D., Utterback, T. R., Saudek, D. M., Phillips, C. A., Merrick, J. M., Tomb, J. F., Dougherty, B. A., Bott, K. F., Hu, P. C., Lucier, T. S., Peterson, S. N., Smith, H. O., Hutchison, C. A., 3rd & Venter, J. C. (1995). The minimal gene complement of Mycoplasma genitalium. Science 270, 397-403.
    10. Ogura, T. & Hiraga, S. (1983). Partition mechanism of F plasmid: two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell 32, 351-60.
    11. Van Der Weyden, M. B. (2012). On being the Editor of the Medical Journal of Australia: Living dangerously. Mens Sana Monogr 10, 150-7.
    12. Farrar, M. (2011). Fighting talk for a year of living dangerously. Interview by Charlotte Santry. Health Serv J 121, 16.
    13. Bignell, C. & Thomas, C. M. (2001). The bacterial ParA-ParB partitioning proteins. J Biotechnol 91, 1-34.
    14. Quisel, J. D. & Grossman, A. D. (2000). Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol 182, 3446-51.
    15. Murray, H. & Errington, J. (2008). Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135, 74-84.
    16. Montecucco, F., Pende, A., Quercioli, A. & Mach, F. (2011). Inflammation in the pathophysiology of essential hypertension. J Nephrol 24, 23-34.
    17. Puhar, A., Johnson, E. A., Rossetto, O. & Montecucco, C. (2004). Comparison of the pH-induced conformational change of different clostridial neurotoxins. Biochem Biophys Res Commun 319, 66-71.
    18. Gerdes, K., Moller-Jensen, J. & Bugge Jensen, R. (2000). Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37, 455-66.
    19. Schumacher, M. A. (2008). Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J 412, 1-18.
    20. Trach, K. & Hoch, J. A. (1989). The Bacillus subtilis spo0B stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol 171, 1362-71.
    21. Ireton, K., Gunther, N. W. & Grossman, A. D. (1994). Spo0j Is Required for Normal Chromosome Segregation as Well as the Initiation of Sporulation in Bacillus-Subtilis. Journal of Bacteriology 176, 5320-5329.
    22. Lobocka, M. & Yarmolinsky, M. (1996). P1 plasmid partition: a mutational analysis of ParB. J Mol Biol 259, 366-82.
    23. Lin, D. C. & Grossman, A. D. (1998). Identification and characterization of a bacterial chromosome partitioning site. Cell 92, 675-85.
    24. Godfrin-Estevenon, A. M., Pasta, F. & Lane, D. (2002). The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol Microbiol 43, 39-49.
    25. Nardmann, J. & Messer, W. (2000). Identification and characterization of the dnaA upstream region of Thermus thermophilus. Gene 261, 299-303.
    26. Ireton, K., Gunther, N. W. t. & Grossman, A. D. (1994). spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol 176, 5320-9.
    27. Breier, A. M. & Grossman, A. D. (2007). Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol 64, 703-18.
    28. Leonard, T. A., Butler, P. J. & Lowe, J. (2004). Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol 53, 419-32.
    29. Autret, S., Nair, R. & Errington, J. (2001). Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein. Mol Microbiol 41, 743-55.
    30. Murray, H., Ferreira, H. & Errington, J. (2006). The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol Microbiol 61, 1352-61.
    31. Gruber, S. & Errington, J. (2009). Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685-96.
    32. Figge, R. M., Easter, J. & Gober, J. W. (2003). Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol 47, 1225-37.
    33. Scholefield, G., Whiting, R., Errington, J. & Murray, H. (2011). Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Mol Microbiol 79, 1089-100.
    34. Nasmyth, K. & Haering, C. H. (2005). The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74, 595-648.
    35. Sullivan, N. L., Marquis, K. A. & Rudner, D. Z. (2009). Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137, 697-707.
    36. Kadoya, R., Baek, J. H., Sarker, A. & Chattoraj, D. K. (2011). Participation of chromosome segregation protein ParAI of Vibrio cholerae in chromosome replication. J Bacteriol 193, 1504-14.
    37. Lee, M. J., Liu, C. H., Wang, S. Y., Huang, C. T. & Huang, H. (2006). Characterization of the Soj/Spo0J chromosome segregation proteins and identification of putative parS sequences in Helicobacter pylori. Biochem Biophys Res Commun 342, 744-50.
    38. Lukaszewicz, M., Kostelidou, K., Bartosik, A. A., Cooke, G. D., Thomas, C. M. & Jagura-Burdzy, G. (2002). Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res 30, 1046-55.
    39. Delbruck, H., Ziegelin, G., Lanka, E. & Heinemann, U. (2002). An Src homology 3-like domain is responsible for dimerization of the repressor protein KorB encoded by the promiscuous IncP plasmid RP4. J Biol Chem 277, 4191-8.
    40. Khare, D., Ziegelin, G., Lanka, E. & Heinemann, U. (2004). Sequence-specific DNA binding determined by contacts outside the helix-turn-helix motif of the ParB homolog KorB. Nat Struct Mol Biol 11, 656-63.
    41. Martin, K. A., Davis, M. A. & Austin, S. (1991). Fine-structure analysis of the P1 plasmid partition site. J Bacteriol 173, 3630-4.
    42. Schumacher, M. A. & Funnell, B. E. (2005). Structures of ParB bound to DNA reveal mechanism of partition complex formation. Nature 438, 516-9.
    43. Kochi, S. K., Schiavo, G., Mock, M. & Montecucco, C. (1994). Zinc content of the Bacillus anthracis lethal factor. FEMS Microbiol Lett 124, 343-8.
    44. Rossetto, O., Schiavo, G., Montecucco, C., Poulain, B., Deloye, F., Lozzi, L. & Shone, C. C. (1994). SNARE motif and neurotoxins. Nature 372, 415-6.
    45. Minor, Z. O. a. W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology 276, p.307-326.
    46. Madhusudan, Kodandapani, R. & Vijayan, M. (1993). Protein hydration and water structure: X-ray analysis of a closely packed protein crystal with very low solvent content. Acta Crystallogr D Biol Crystallogr 49, 234-45.
    47. Tong, L., Qian, C., Davidson, W., Massariol, M. J., Bonneau, P. R., Cordingley, M. G. & Lagace, L. (1997). Experiences from the structure determination of human cytomegalovirus protease. Acta Crystallogr D Biol Crystallogr 53, 682-90.
    48. Greenfield, N. J. (1999). Applications of circular dichroism in protein and peptide analysis. Trac-Trends in Analytical Chemistry 18, 236-244.
    49. Vecchiarelli, A. G., Schumacher, M. A. & Funnell, B. E. (2007). P1 partition complex assembly involves several modes of protein-DNA recognition. J Biol Chem 282, 10944-52.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE