簡易檢索 / 詳目顯示

研究生: 陳仲威
Chen, Chung-Wei
論文名稱: 溝槽毛細平板熱管之可視化觀察與蒸發熱阻量測
Visualization and Evaporation Resistance Measurement for Groove-Wick Evaporator of Operating Flat-Plate Heat Pipes
指導教授: 王訓忠
Wong, Shwin-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 50
中文關鍵詞: 熱管可視化溝槽毛細蒸發熱阻
外文關鍵詞: Heat pipe, Visualization, Groove-wick, Evaporation Resistance
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用可視化之平板熱管,研究具平行溝槽毛細結構之平板
    熱管蒸發區在操作中發生的現象。溝槽截面為U 形,寬0.25mm、深
    0.16mm,採用的工作流體分別有水、甲醇、或丙酮。另亦包括於溝
    槽蒸發區燒結不規則細銅粉的複合式毛細結構。可視化觀察指出,除
    在低加熱量外,各溝槽中之水膜會分別出現一聚光性端部,各溝槽之
    水膜的動態行為彼此獨立,隨加熱量增加時,水膜端部逐漸退離加熱
    區,熱阻會隨此乾化過程而上升。然而,本研究之溝槽毛細之最低蒸
    發熱阻量測值高於本實驗室先前對多層銅網或燒結銅粉毛細測得之
    最低蒸發熱阻值,且實驗重複性不及另兩種毛細之平板熱管。當採用
    複合式毛細結構時,熱管操作性能較溝槽毛細結構時穩定,且具較高
    之最大加熱量。此外,在三種不同工作流體下均未觀察到核沸騰現象。


    摘要...................................................................................I 圖表目錄......................................................................................IV 第一章 緒論 1.1 研究背景.............................................................................................1 1.2 熱管的結構.........................................................................................1 1.3原理與文獻回顧 1.3.1 熱管之工作原理..........................................................................2 1.3.2 溝槽毛細蒸發現象....................................................................11 1.3.3 複合式溝槽毛細........................................................................15 1.4 研究動機與目的...............................................................................16 第二章 實驗方法 2.1實驗架構與配置.................................................................................18 2.2實驗儀器.............................................................................................21 2.3實驗步驟 2.3.1 前置作業....................................................................................23 2.3.2 注水量之選擇............................................................................24 2.3.3 實驗流程................................................................................25 2.4 實驗數據處理...................................................................................25 第三章 結果與討論 3.1 溝槽毛細之蒸發區觀察...................................................................28 3.2 溝槽毛細操作中之蒸發熱阻量測與觀察 3.2.1 選用水為工作流體....................................................................32 3.2.2 選用甲醇、丙酮為工作流體......................................................38 3.3 溝槽燒結粉末毛細之操作中熱阻量測 3.3.1 選用水為工作流體....................................................................41 3.3.2 選用甲醇、丙酮為工作流體......................................................42 3.4 溝槽毛細之冷凝區觀察...................................................................43 第四章 結論...................................................................................45 參考文獻.........................................................................47

    [1] G.P. Peterson, An Introduction to Heat Pipes, Modeling, Testing, and Applications, Wiley, 1994.
    [2] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill,1976.
    [3] R. Hopkins, A. Faghri, D. Khrustalev, Flat Miniature Heat Pipes With Micro Capillary Grooves, J. Heat Transfer 121 (1999), 102-109
    [4] K. H. Do, S. J. Kim, S. V. Garimella, A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick, Int. J. Heat Mass Transfer 51 (2008) 4637–4650
    [5] S. J. Kim, J. K. Seo, K. H. Do,Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure, Int. J. Heat Mass Transfer 46 (2003) 2051 - 2063
    [6] S. Anand, S. De, S. Dasgupta, Experimental and theoretical study of axial dryout point for evaporation from V-shaped microgrooves, Int. J. Heat Mass Transfer 45 (2002) 1535–1543
    [7] Y. Tang, D. Deng, L. Lu, M. Pan, Q. Wang, Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera, Experimental Thermal and Fluid Science 34 (2010) 190–196.
    [8] S.-W. Chen, J.-C. Hsieh, C.-T. Chou, H.-H. Lin, S.-C. Shen, M.-J. Tsai, Experimental investigation and visualization on capillary and boiling limits of micro-grooves made by different processes, Sensors and Actuators A 139 (2007) 78–87.
    [9] J.-H. Liou , C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498-1506.
    [10] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 3792-3798.
    [11] S. Lips, F. Lefèvre, J. Bonjour, Nucleate boiling in a flat grooved heat pipe,Int. J. Thermal Sciences 48 (2009) 1273–1278.
    [12] F.W. Holm, S.P. Goplen, Heat transfer in the meniscus thin film transition region, ASME J. Heat Transfer 101 (1979) 543 - 547.
    [13] G.R. Stroes, I. Catton, An experimental study of the capillary performance of triangular versus sinusoidal channels, ASME J. Heat Transfer 119 (1997) 851–853.
    [14] R.H. Nilson, S.W. Tchikanda, S.K. Griffiths, M.J. Martinez, Steady evaporating flow in rectangular microchannels, Int. J. Heat Mass Transfer 49 (2006) 1603–1618.
    [15] A.J. Jiao, H.B. Ma, J.K. Critser, Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves,Int. J. Heat Mass Transfer 50 (2007) 2905–2911.
    [16] H. Wang, S.V. Garimella , J.Y. Murthy, Characteristics of an evaporating thin film in a microchannel,Int. J. Heat Mass Transfer 50 (2007) 3933–3942.
    [17] H.K. Dhavaleswarapu, S.V. Garimella, J.Y. Murthy, Microscale Temperature Measurements Near the Triple Line of an Evaporating Thin Liquid Film, ASME J. Heat Transfer 131 (2009) 061501
    [18] 劉睿凱,王肇浩,張長生,白先聲,複合式熱管開發應用研究,熱管理產業通訊2008年第9期.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE