研究生: |
吳宜萱 Wu, Yi-Shiuan |
---|---|
論文名稱: |
高效能奈米結構化三相區電極製作與電化學穩定性測試應用於微型直接甲醇燃料電池 Fabrication of a Highly Efficient Nano-Structured Three-Phase-Zone Electrode and the Electrochemical Stability Tests for DMFC Applications |
指導教授: |
曾繁根
Tseng, Fan-Gang |
口試委員: |
薛富盛
薛康琳 葉宗洸 蘇育全 曾繁根 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 白金奈米觸媒 、奈米碳管 、直接甲醇燃料電池 、開放迴路還原系統 、電化學穩定性 、電位循環掃描技術 、三相區 、旋轉塗佈 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In the present study, highly homogeneous platinum nanocatalysts with enhanced electrocatalytic activity were uniformly deposited on carbon nanotubes directly grown on a silicon plate (Pt/CNTs/Si) as the electrodes for direct methanol fuel cells (DMFCs) by a novel homemade open-loop reduction system (OLRS). Compared with a traditional reflux system that maintains the ratio of water to ethylene glycol (EG) at ~160 °C for ~4 h, the gradual concentration increase of EG in the precursor solution can be accomplished by distilling off water in the OLRS while increasing the temperature to 130 °C. This process with simultaneous increases in precursor concentration and in reaction temperature rendered high-quality Pt nanoparticles to precipitate with high-density dispersion on the pretreated CNTs. The OLRS is not only able to shorten the reduction time (<1.5 h) but also able to enhance the electrocatalytic activity of the electrodes by creating a preferential orientation of Pt (111) facets for the methanol oxidation reaction (MOR). Cyclic voltammetry and electrochemical impedance spectroscopy were conducted to evaluate the mass activity (MA) and charge transfer resistance (Rct) of the fabricated electrodes for the MOR. Compared with the electrodes prepared by traditional Pt reductions (MA: 100-360 A gPt-1 and Rct: 40-80 Ω-cm2), the Pt/CNTs/Si-based electrodes prepared at 130 °C in the OLRS exhibited superior electrocatalytic properties, including an MA of 435 A gPt-1 and an Rct of ~30 Ω-cm2. By the potential cycling technique of startup and shutdown cycles under strongly oxidizing conditions, the electrochemical stability of the above-prepared CNTs and Pt/CNTs electrodes was evaluated to mimic the real electrode operating environment in DMFCs. The cyclic voltammetry (CV) curves for MOR revealed that the performance degradation of the electrochemically-treated electrodes at 60 °C was 1.7 times higher than those at 25 °C after the electrochemical oxidation tests for 5 h, resulting from the loss of electrochemical surface area (ESA) of Pt catalysts during the electrode operation. This is mainly due to carbon corrosion or rearrangement of Pt catalysts on CNTs, resulting in the Pt agglomeration (or growth of Pt particles) on and Pt detachment from the surface of the CNTs during the electrochemical oxidation process. With regard to the membrane electrode assembly (MEA), a Pt/CNTs electrode with a thin and uniform ionomer layer as the proton-conducting electrolyte on a nano patterned three-phase zone (TPZ) was fabricated in this study, aiming at high electrocatalytic activity and high charge transfer rate for MOR. Unlike conventional paste or spray methods that produced thick and non-uniform ionomer layers to form TPZs within the catalyst layers (50-100 um) of electrodes, thin and uniform ionomer layers (5-10 nm) on the hydrophilic-treated Pt/CNTs electrodes were harvested by spin-coating. The thickness of the ionomer layer was controlled by altering the spin-coating speed, and the effect of the ionomer thickness on the surface of the catalyst layer and on the electrochemical properties of the electrodes for MOR was studied. Compared to the electrode fabricated by spraying (MA: 355 A gPt-1, Rct: 48 Ω-cm2), the ionomer-coated electrode spin-coated at 4000 rpm exhibited superior properties for MOR (MA: 381 A gPt-1, Rct: 15 Ω-cm2). The outcome renders this new electrode to embrace potential applications in micro DMFCs with the design of a thin and uniform TPZ.
1. J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd Ed., John Wiley & Sons Ltd., 2003.
2. C. Coutanceau, R.K. Koffi, J.M. Leger, K. Marestin, R. Mercier, C. Nayoze, P. Capron, J. Power Sources 160 (2006) 334.
3. C. Cremers, M. Scholz, W. Seliger, A. Racz, W. Knechtel, J. Rittmayr, F. Grafwallner, H. Peller, U. Stimming, Fuel Cells 7 (2007) 21.
4. S.K. Kamarudin, F. Achmad, W.R.W. Daud, Int. J. Hydrogen Energy 34 (2009) 6902.
5. K. Kleiner, Nature 441 (2006) 1046.
6. J.T. Muller, P.M. Urban, W.F. Holderich, J. Power Sources 84 (1999) 157.
7. S. Uhm, J. Lee, J. Ind. Eng. Chem. 15 (2009) 661.
8. H.P. Yuan, H.Q. Song, X.P. Qiu, W.T. Zhu, L.Q. Chen, Electrochem. Commun. 12 (2010) 14.
9. A.N. Golikand, E. Lohrasbi, M. Asgari, Int. J. Hydrogen Energy 35 (2010) 9233.
10. B. Avasarala, R. Moore, P. Haldar, Electrochim. Acta 55 (2010) 4765.
11. J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Science 315 (2007) 220.
12. Y.Y. Shao, G.P. Yin, Y.Z. Gao, J. Power Sources 171 (2007) 558.
13. H.S. Liu, C.J. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, J. Power Sources 155 (2006) 95.
14. M.M. Bruno, E.A. Franceschini, G.A. Planes, H.R. Corti, J. Appl. Electrochem. 40 (2010) 257.
15. F.A. Viva, M.M. Bruno, H.R. Corti, ECS Trans. 41 (2011) 1121.
16. G. Ramos-Sanchez, M.M. Bruno, Y.R.J. Thomas, H.R. Corti, O. Solorza-Feria, Int. J. Hydrogen Energy 37 (2012) 31.
17. M. Carmo, A.R. Dos Santos, J.G.R. Poco, M. Linardi, J. Power Sources 173 (2007) 860.
18. Z.H. Teng, G. Wang, B. Wu, Y. Gao, J. Power Sources, 164 (2007) 105.
19. H.B. Zhao, L. Li, J. Yang, Y. Zhang, H. Li, Electrochem. Commun. 10 (2008) 876.
20. H.J. Chun, D.B. Kim, D.H. Lim, W.D. Lee, H.I. Lee, Int. J. Hydrogen Energy 35 (2010) 6399.
21. M.C. Tsai, T.K. Yeh, C.H. Tsai, Int. J. Hydrogen Energy 36 (2011) 8261.
22. R.E. Fuentes, B.L. Garcia, J.W. Weidner, J. Electrochem. Soc. 158 (2011) B461.
23. M.S. Saha, A. Kundu, J. Power Sources 195 (2010) 6255.
24. R. Yu, L. Chen, Q. Liu, J. Lin, K.L. Tan, S.C. Ng, S.O. Chan, G.Q. Xu, T.S. Hor, Chem. Mater. 10 (1998) 718.
25. L. Li, Y.C. Xing, J. Electrochem. Soc. 153 (2006) A1823.
26. M.C. Tsai, T.K. Yeh, C.H. Tsai, Electrochem. Commun. 81 (2006) 1445.
27. C.W. Yang, X.G. Hu, D.L. Wang, C.S. Dai, L. Zhang, H.B. Jin, J. Power Sources 160 (2006) 187.
28. Z.L. Liu, X.Y. Ling, B. Guo, L. Hong, J.Y. Lee, J. Power Sources 167 (2007) 272.
29. C.H. Wang, H.Y. Dub, Y.T. Tsai, C.P. Chen, C.J. Huang, L.C. Chen, J. Power Sources 171 (2007) 55.
30. N. Jha, A.L.M. Reddy, M.M. Shaijumon, N. Rajalakshmi, S. Ramaprabhu, Int. J. Hydrogen Energy 33 (2008) 427.
31. L. Li, Y.C. Xing, J. Power Sources 178 (2008) 75.
32. X. Sun, R. Li, B. Stansfield, J.P. Dodelet, S. Desilets, Chem. Phys. Lett. 394 (2004) 266.
33. W. Zhu, D. Ku, J.P. Zheng, Z. Liang, B. Wang, C. Zhang, S. Walsh, G. Au, E.J. Plichta, Electrochim. Acta 55 (2010) 2555.
34. M. Watanabe, M. Uchida, S. Motoo, J. Electroanal. Chem. 229 (1987) 395.
35. X. Li, I.M. Hsing, Electrochim. Acta 51 (2006) 5250.
36. X. Wang, I.M. Hsing, Electrochim. Acta 47 (2002) 2981.
37. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, J. Phys. Chem. B 107 (2003) 6292.
38. C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougal, J. Am. Chem. Soc. 126 (2004) 8028.
39. W. Li, C. Liang, W. Zhou, J. Qiu, H. Li, G. Sun, Q. Xin, Carbon 42 (2004) 423.
40. L.S. Sarma, C.H. Chen, S.M.S. Kumar, G.R. Wang, S.C. Yen, D.G. Liu, H.S. Sheu, K.L. Yu, M.T. Tang, J.F. Lee, C. Bock, K.H. Chen, B.J. Hwang, Langmuir 23 (2007) 5802.
41. D.A. Stevens, J.R. Dahn, Carbon 43 (2005) 179.
42. J. Xie, D.L. Wood, K.L. More, P. Atanassov, R.L. Borup, J. Electrochem. Soc. 152 (2005) A1011.
43. P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J. Electrohem. Soc. 52 (2005) A2256.
44. R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, J. Power Sources 163 (2006) 76.
45. B. Avasarala, R. Moore, P. Haldar, Electrochim. Acta 55 (2010) 4765.
46. J.H. Tian, F.B. Wang, Z.Q. Shan, R.J. Wang, J.Y. Zhang, J. Appl. Electrochem. 34 (2004) 461.
47. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, J. Power Sources 176 (2008) 444.
48. D. Song, Q. Wang, Z. Liu, M. Eikerling, Z. Xie, T. Navessin, Electrochim. Acta 50 (2005) 3347.
49. K. Han, J. Lee, H. Kim, Electrochim. Acta 52 (2006) 1697.
50. D. Lee, S. Hwang, Int. J. Hydrogen Energy 33 (2008) 2790.
51. K. Furukawa, K. Okajima, M. Sudoh, J. Power Sources 139 (2005) 9.
52. M.A. Scibioh, I.H. Oh, T.H. Lim, S.A. Hong, H.Y. Ha, Appl. Catal. B – Environ. 77 (2008) 373.
53. G. Wu, B.Q. Xu, J. Power Sources 174 (2007) 148.
54. C.H. Park, M.A. Scibioh, H.J. Kim, I.H. Oh, S.A. Hong, H.Y. Ha, J. Power Sources 162 (2006) 1023.
55. J.H. Kim, H.Y. Ha, I.H. Oh, S.A. Hong, H.N. Kim, H.I. Lee, Electrochim. Acta 50 (2004) 801.
56. Y.S. Wu, S.M. Gong, C.H. Wang, T.K. Yeh, M.C. Tsai, C.H. Tsai, Y.C. Su, F.G. Tseng, Electrochim. Acta 64 (2012) 162.
57. C.K. Rhee, B.J. Kim, C. Ham, Y.J. Kim, K. Song, K. Kwon, Langmuir 25 (2009) 7140.
58. S.L. Chen, C.T. Lin, C.C. Chieng, F.G. Tseng, J. Power Sources 195 (2010) 1640.
59. S.K. Wang, F.G. Tseng, T.K. Yeh, C.C. Chieng, J. Power Sources 167 (2007) 413.
60. Y.S. Wu, Y.W. Kuo, T.K. Yeh, C.H. Tsai, F.G. Tseng, Proc. 5th Fuel Cells Science & Technology Conference, Zaragoza, Spain, October 6-7, 2010.
61. R.J. Woods, Electroanal. Chem. 9 (1976) 1.
62. G. Kovacs, Seepage Hydraulics, Elsevier Science Publishers, 1981.
63. G. Wu, L. Li, B.Q. Xu, Electrochim. Acta 50 (2004) 1.
64. M.A. Hamon, P. Bhowmik, H. Hu, S. Nivogi, B. Zhao, M.E. Itkis, R.C. Haddon, Chem. Phys. Lett. 347 (2001) 8.
65. K.U. Jeong, A.F. Clascidia, L. Xiaoming, C. Gugang, C.E. Peter, J. Am. Chem. Soc. 127 (2005) 15437.
66. R.Q. Yu, L.W. Chen, Q.P. Liu, J.Y. Lin, K.L. Tan, S.C. Ng, H.S.O. Chan, G.Q. Xu, T.S.A. Hor, Chem. Mater. 10 (1998) 718.
67. J.H. Chen, M.Y. Wang, B. Liu, Z. Fan, K.Z. Cui, Y. Kuang, J. Phys. Chem. B 110 (2006) 11775.
68. H.S. Oh, K. Kim, Y.J. Ko, H. Kim, Int. J. Hydrogen Energy 35 (2010) 701.
69. E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki, Science 265 (1994) 1850.
70. J. Xie, F. Garzon, T. Zawodzinski, W. Smith, J. Electrochem. Soc. 151 (2004) A1084.
71. W. Vielstich, A. Lamm, H.A. Gasteiger, Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol.3, John Wiley & Sons Ltd., 2003.
72. F. Maillarda, A. Bonnefontb, M. Chateneta, L. Guetazc, B. Doisneau-Cottigniesd, H. Roussele, Electrochim. Acta 53 (2007) 811.
73. X.S. Peng, K. Koczkur, S. Nigro, A.C. Chen, Chem. Commun. 24 (2004) 2872.
74. M. Ciureanu, H. Wang, J. Electrochem. Soc. 146 (1999) 4031.
75. K. Furukawa, K. Okajima, M. Sudoh, J. Power Sources 139 (2005) 9.
76. E. Gileadi, Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists, John Wiley & Sons Ltd., 1993.
77. C.M. Lai, J.C. Lin, F.P. Ting, S.D. Chyou, K.L. Hsueh, Int. J. Hydrogen Energy 33 (2008) 4132.
78. Z. Xie, S. Holdcroft, J. Electroanal. Chem. 568 (2004) 247.
79. X.Z. Yuan, H.J. Wang, J.C. Sun, J.J. Zhang, Int. J. Hydrogen Energy 32 (2007) 4365.
80. M.A. Abdelkareem, T. Tsujiguchi, N. Nakagawa, J. Power Sources 195 (2010) 6287.
81. K. Kinoshita, J.A.S. Bett, Carbon 12 (1974) 525.
82. M. Jeguirim, V. Tschamber, P. Ehrburger, Appl. Catal. B-Environ. 76 (2007) 235.
83. S.M. Gong, Y.S. Wu, T.K. Yeh, F.G. Tseng, Proc. 15th Nano & Micro-System Technology Conference, Taipei, Taiwan, September 6-7, 2011.
84. H.C. Peng, C.N. Wang, Y.C. Su, T.K. Yeh, F.G. Tseng, Proc. 25th IEEE MEMS, Paris, France, January 29-February 2, 2012.