簡易檢索 / 詳目顯示

研究生: 吳向陽
Hsiang-Yang Wu
論文名稱: 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
High Yield Synthesis of High Aspect Ratio Gold Nanorods and Direct Synthesis of Branched Gold Nanocrystals
指導教授: 黃暄益
Michael Hsuan-Yi Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 75
中文關鍵詞: 金奈米棒金奈米粒子植晶分支
外文關鍵詞: gold nanorod, gold nanoparticle, seeding growth, brchah
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文發展出一項嶄新的高徑長比金奈米棒合成方法。 藉由改進傳統植晶法的合成方式,在合成過程中加入硝酸配合界面活性劑的作用,促使高長度且高產量高分散性的金奈米棒大量生成。
    在傳統合成金奈米棒的實驗中,奈米金三角形片狀物是無法避免的副產物;為了降低金奈米三角片狀物的生成,在合成催化金核的實驗過程中修飾出新的奈米晶核粒子,並成功地取代了傳統的金核保護劑 (檸檬酸鈉),有效並成功地抑制了片狀物的產生。
    利用紫外線光譜儀、掃描式和穿透式電子顯微鏡對於產物做定性分析和測定,結果都顯示出高徑長比與高產量的金奈米棒的合成非常地成功。
    本文對於氫氧化鈉和左旋維他性C對於多分支金奈米粒子生成的影響作研究。 具有高表面積型態的多分支金奈米粒子是較為不穩定的活性奈米材料, 在室溫之下約1小時即會轉換成較為等向穩定性的球狀金奈米粒子。
    實驗中利用紫外線光譜儀和穿透式電子顯微鏡,對於金奈米粒子的形態轉換在不同的時間下做即時監控與實驗對照,有效地對於多分支金奈米粒子的成長過程變化作定性分析研究。 並成功地在於低溫下阻止多分支奈米粒子的形態轉換,有效控制多分支金奈米粒子的穩定存在,使其多分支型態穩定存在達一個月以上。


    We report a new development for the direct high-yield synthesis of high aspect ratio gold nanorods. By using a modified seed-mediated synthesis approach for the preparation of high aspect ratio gold nanorods with the addition of an appropriate amount of nitric acid during nanorod growth, uniform and monodisperse gold nanorods were synthesized in large quantity.
    The formation of triangular nanoplate by-products was substantially reduced by replacing trisodium citrate with CTAB surfactant as the capping agent in the preparation of gold seeds. The nanorods have an average length of 355.3 ± 31.3 nm and an average diameter of 18.7 nm, giving them an average aspect ratio of 19. The ultra-small gold seeds used for nanorod growth are ~1–2 nm in diameter and show a weak absorption band centered at ~480 nm. The nanorods show a transverse surface plasmon resonance (SPR) absorption band at 497 nm and a longitudinal SPR band in the near-infrared (NIR) region.
    We report a synthesis of branched gold nanocrystals by the addition of a suitable amount of NaOH to an aqueous solution of cetyltrimethylammonium bromide, HAuCl4, and ascorbic acid. NaOH serves as an effective reducing agent to induce the formation of branched gold nanocrystals. The branched nanocrystals were formed within minutes of reaction and showed monopod, bipod, tripod, and tetrapod structures. The branched nanocrytals quickly transformed into spherical nanoparticles within 1 h of reaction, and the process was essentially complete after 2 days of reaction.
    The morphological transformation has been monitored by both UV–vis absorption spectroscopy and electron microscopy. The appearance of two major absorbance bands for the branched gold nanocrystals eventually became only a single band at 529 nm for the spherical nanoparticles. The resulting nanoparticles are single crystalline with diameters of 20–50 nm and without the presence of twinned boundaries. By keeping the freshly prepared branched nanocrystals in a refrigerator at 4 °C, their multipod structure can be preserved for over a month without significant spectral shifts.

    Abstract i Table of contant iii List of figure v CHAPTER 1 A SURVEY ON GOLD NANORODS 1.1 Introduction 1 1.2 Synthesis of Gold Nanorods with Various Approaches 4 1.2.1 Seed-Mediated Growth Method 4 1.2.2 Electrochemical Synthesis Method 5 1.2.3 Photochemical Synthesis of Gold Nanorods 7 1.3 Applications of Gold Nanorods 9 1.3.1 End-to-End Assembly of Gold Nanorods 9 1.3.2 Cancer Cell Imaging and Photothermal Therapy Useing Gold Nanorods 11 1.3.3 DNA-Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by Near Infrared Irradiation 11 1.4 References 14 CHAPTER 2 SEED MEDIATED SYNTHESIS OF HIGH ASPECT RATIO GOLD NANORODS WITH NITRIC ACID 2.1 Introduction 16 2.2 Experimental Section 18 2.2.1 Preparation of Gold Seeds 18 2.2.2 Preparation of Growth Solution 18 2.2.3 Synthesis of High Aspect Ratio Gold Nanorods 18 2.3 Results and Discussion 19 2.4 Conclusion 31 2.5 References 33 CHAPTER 3 DIRECT HIGH YIELD SYNTHESIS OF HIGH ASPECT RATIO GOLD NANORODS 3.1 Introduction 36 3.2 Experimental Section 38 3.2.1 Preparation of Gold Seeds 38 3.2.2 Preparation of Growth Solution 39 3.2.3 Synthesis of High Aspect Ratio Gold Nanorods 39 3.3 Results and Discussion 40 3.4 Conclusion 52 3.5 References 54 CHAPTER 4 DIRECT SYNTHESIS OF BRANCHED GOLD NANOCRYSTALS ADN THEIR TRANSFORMATION INTO SPHERIAL NANOPARTICLES 4.1 Introduction 56 4.2 Experimental Section 58 4.3 Results and Discussion 59 4.4 Conclusion 72 4.5 References 74

    CHAPTER 1 A SURVEY ON GOLD NANORODS
    (1) Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
    (2) Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.
    (3) Mirkin, C. A. Inorg. Chem. 2000, 39, 2258.
    (4) Lin, S.-Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-H. Anal. Chem. 2002, 74, 330.
    (5) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
    (6) Huang, Y.; Duan, X.; Lieber, C. M. Science 2001, 291, 630.
    (7) Maier, S. A.; Brongersma, M. L.; Kik, P, G.; Meltzer, S.; Requichia, A. A. G.; Atwater, H. Adv. Mater. 2001, 13, 1501.
    (8) Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S.; Feldheim, D. L. J. Am. Chem. Soc. 2003, 125, 4700.
    (9) Katz, E.; Willner, I. Angew. Chem., Int. Ed. Engl. 2004, 43, 6042.
    (10) Fan, H.; Lu, Y.; Stump, A.; Reed, S. T.; Baer, T.; Schunk, R.; Perez-Luna, V.; Lopez, G. P.; Brinker, C. J. Nature 2000, 405, 56.
    (11) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914.
    (12) Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 13066.
    (13) Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264.
    (14) Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B. 2005, 109, 13857.
    (15) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
    (16) Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.
    (17) Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19, 9065.
    (18) Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. J. Phys. Chem. B. 1997, 101, 6661.
    (19) Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C.; Wang, C. R. C. Langmuir 1999, 15, 701.
    (20) Hung, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115.
    (21) Chen, C. C.; Lin, Y. P.; Wang, C. W.; Tzeng, H. C.; Wu, C. H.; Chen, Y. C.; Chen, C.; Chen, L. C.; Wu, Y. C. J. Am. Chem. Soc. 2006, 128, 3709.
    (22) Chou, C. H.; Chen, C. D.; Wang, C. R. C. J. Phys. Chem. B 2005, 109, 11135.

    CHAPTER 2 Seed-Mediated Synthesis of High Aspect Ratio Gold Nanorods with Nitric Acid
    (1) Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857.
    (2) (a) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661. (b) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701.
    (3) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
    (4) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
    (5) Niidome, Y.; Nishioka, K.; Kawasaki, H.; Yamada, S. Chem. Commun. 2003, 2376.
    (6) Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389.
    (7) (a) Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 617. (b) Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.
    (8) Hu, J.-Q.; Chen, Q.; Xie, Z.-X.; Han, G.-B.; Wang, R.-H.; Ren, B.; Zhang, Y.; Yang, Z.-L.; Tian, Z.-Q. Adv. Funct. Mater. 2004, 14, 183.
    (9) Sönnichsen, C.; Alivisatos, A. P. Nano Lett. 2005, 5, 301.
    (10) Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. A 2003, 107, 3372.
    (11) (a) Lin, S. Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-h. Anal. Chem. 2002, 74, 330. (b) Lin, S.-Y.; Chen, C.-h.; Lin, M.-C.; Hsu, H.-F. Anal. Chem. 2005, 77, 4821. (c) Liu, J.; Lu, Y. J. Am. Chem. Soc. 2004, 126, 12298.
    (12) (a) Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757. (b) Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674.
    (13) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914.
    (14) Chang, J.-Y.; Wu, H.; Chen, H.; Ling, Y.-C.; Tan, W. Chem. Commun. 2005, 1092.
    (15) Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 13066.
    (16) Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264.
    (17) Orendorff, C. J.; Hankins, P. L.; Murphy, C. J. Langmuir 2005, 21, 2022.
    (18) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
    (19) (a) Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065. (b) Jana, N. R. Chem. Commun. 2003, 1950.
    (20) Gole, A.; Murphy, C. J. Chem. Mater. 2004, 16, 3633.
    (21) Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19, 9065.
    (22) Sau, T. K.; Murphy, C. J. Langmuir 2004, 20, 6414.
    (23) Kuo, C.-H.; Chiang, T.-F.; Chen, L.-J.; Huang, M. H. Langmuir 2004, 20, 7820.
    (24) Kuo, C.-H.; Huang, M. H. Langmuir 2005, 21, 2012.
    (25) Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. Mater. Chem. 2002, 12, 1765.
    (26) Gai, P. L.; Harmer, M. A. Nano Lett. 2002, 2, 771.
    (27) Hernádez, J.; Solla-Gullón, J.; Herrero, E.; Aldaz, A.; Feliu, J. M. J. Phys. Chem. B 2005, 109, 12651.
    (28) Obare, S. O.; Jana, N. R.; Murphy, C. J. Nano Lett. 2001, 1, 601.
    (29) Brioude, A.; Jiang, X. C.; Pileni, M. P. J. Phys. Chem. B 2005, 109, 13138.
    (30) Malikova, N.; Pastoriza-Santos, I.; Schierhorn, M.; Kotov, N. A.; Liz-Marzán, L. M. Langmuir 2002, 18, 3694.

    CHAPTER 3 Direct High Yield Synthesis of High Aspect Ratio Gold Nanorods
    (1) (a) Caswell, K. K.; Wilson, J. N.; Bunx, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914. (b) Chang, J.-Y.; Wu, H.; Chen, H.; Ling, Y.-C.; Tan, W. Chem. Commun. 2005, 1092. (c) Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 13066.
    (2) Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. J. Am. Chem. Soc. 2005, 127, 6516.
    (3) (a) Orendorff, C. J.; Hankins, P. L.; Murphy, C. J. Langmuir 2005, 21, 2022. (b) Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264.
    (4) (a) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701. (b) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661.
    (5) (a) Niidome, Y.; Nishioka, K.; Kawasaki, H.; Yamada, S. Chem. Commun. 2003, 2376. (b) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
    (6) (a) Jana, N. R. Small 2005, 1, 875. (b) Sau, T. K.; Murphy, C. J. Langmuir 2004, 20, 6414. (c) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
    (7) Murphy, C. J. Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857.
    (8) (a) Gole, A.; Murphy, C. J. Chem. Mater. 2004, 16, 3633. (b) Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19, 9065.
    (9) Jana, N. R. Chem. Commun. 2003, 1950.
    (10) Wu, H.-Y.; Chu, H.-C.; Kuo, T.-J.; Kuo, C.-L.; Huang, M. H. Chem. Mater. 2005, 17, 6447.
    (11) Chu, H.-C.; Kuo, C.-H.; Huang, M. H. Inorg. Chem. 2006, 45, 808.
    (12) Orendorff, C. J.; Murphy, C. J. J. Phys. Chem. B 2006, 110, 3990.
    (13) Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Nano Lett. 2003, 3, 1229.
    (14) Brioude, A.; Jiang, X. C.; Pileni, M. P. J. Phys. Chem. B 2005, 109, 13138.
    (15) Pérez-Juste, J.; Liz-Marzán, L. M.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Adv. Funct. Mater. 2004, 14, 571.
    (16) Berr, S.; Jones, R. R. M.; Johnson, J. S., Jr. J. Phys. Chem. 1992, 96, 5611.
    (17) Lin, H.-P.; Liu, S.-B.; Mou, C.-Y.; Tang, C.-Y. Chem. Commun. 1999, 583.

    CHAPTER 4 Direct Synthesis of Branched Gold Nanocrystals and Their Transformation into Spherical Nanoparticles
    (1) Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186.
    (2) (a) Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327. (b) Hao, E.; Schatz, G. C.; Hupp, J. T. J. Fluoresc. 2004, 14, 331.
    (3) Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648.
    (4) Kuo, C.-H.; Huang, M. H. Langmuir 2005, 21, 2012.
    (5) Xiao, Y.; Shlyahovsky, B.; Popov, I.; Pavlov, V.; Willner, I. Langmuir 2005, 21, 5659.
    (6) Yamamoto, M.; Kashiwagi, Y.; Sakata, T.; Mori, H.; Nakamoto, M. Chem. Mater. 2005, 17, 5391.
    (7) Herricks, T.; Chen, J.; Xia, Y. Nano Lett. 2004, 4, 2367.
    (8) Teng, X.; Yang, H. Nano Lett. 2005, 5, 885.
    (9) Zhong, X.; Feng, Y.; Lieberwirth, I.; Knoll, W. Chem. Mater. 2006, ASAP.
    (10) Hoefelmeyer, J. D.; Niesz, K.; Somorjai, G. A.; Tilley, T. D. Nano Lett. 2005, 5, 435.
    (11) Zettsu, N.; McLellan, J. M.; Wiley, B.; Yin, Y.; Li, Z.-Y.; Xia, Y. Angew. Chem. Int. Ed. 2006, 45, 1288.
    (12) Wu, H.-Y.; Chu, H.-C.; Kuo, T.-J.; Kuo, C.-L.; Huang, M. H. Chem. Mater. 2005, 17, 6447.
    (13) (a) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701. (b) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661.
    (14) Kuo, C.-H.; Chiang, T.-F.; Chen, L.-J.; Huang, M. H. Langmuir 2004, 20, 7820.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE