簡易檢索 / 詳目顯示

研究生: 張為宣
Chang, Wei-Hsuan
論文名稱: 透過Ni摻雜調控能帶提升Mo2C/NixZnIn2S4光催化產氫之研究
Tuning Bandgap by Ni doping of Mo2C/NixZnIn2S4 for Enhanced Photocatalytic Hydrogen Production
指導教授: 呂明諺
Lu, Ming-Yen
口試委員: 張育誠
Chang, Yu-Cheng
郭俊宏
Kuo, Chun-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 77
中文關鍵詞: Ni摻雜ZnIn2S4Mo2C/NixZnIn2S4複合材料光催化產氫
外文關鍵詞: Ni doped ZnIn2S4, Mo2C/NixZnIn2S4 composite materials, photocatalytic hydrogen production
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技社會蓬勃發展,人們對能源需求越來越大,氫氣逐漸成為能源的一部分。氫能源因其乾淨、可再生和高能量密度的特性,受到廣泛關注。光催化水解技術被認為是有效產氫的方法,但早期使用的二氧化鈦材料因其能帶過大(3.2 eV),無法充分利用太陽光中的可見光和紅外光,只能吸收紫外光,效率受限。為提高光催化效率,科學家們研究新型光催化材料,並通過摻雜或是異質結構來調整能帶結構,來提升光催化水解產氫技術。
    本研究在合成時,透過添加不同Ni doping量來調整ZnIn2S4的能帶,分別添加0.1、0.2和0.3 mmol鎳的前驅物,得到NixZnIn2S4(x = 0.1, 0.2, 0.3)。從UV-vis量測結果可以發現NixZnIn2S4的能帶隨著Ni doping量的增加而減少,此外,量測光催化產氫結果發現Ni0.2ZnIn2S4擁有最高的產率為2.37 mmol g-1 h-1,是純ZnIn2S4的6.24 倍。其原因為Ni0.2ZnIn2S4具有最佳的能帶結構,使其電子–電洞對再復合率最低,電子傳遞速率最好。接著,添加助催化劑Mo2C使其成為Mo2C/NixZnIn2S4複合材料,測量產氫結果得到Mo2C/Ni0.2ZnIn2S4的產率為4.43 mmol g-1 h-1,是純ZnIn2S4的產率11.6倍之多,也是Ni0.2ZnIn2S4的1.87 倍。而增強的光催化性能可歸因於Mo2C加強複合材料的可見光吸收且增加載子傳輸以降低電子–電洞對再復合率,還增加產氫反應的活性位點,進而提高產氫性能。


    As technology and society flourish, the demand for energy continues to rise, and hydrogen is gradually becoming a part of the energy landscape. Hydrogen energy is receiving widespread attention due to its clean, renewable, and high energy density characteristics. Photocatalytic water splitting is considered an effective method for hydrogen production, but the early use of titanium dioxide (TiO₂) was limited due to its large band gap (3.2 eV), which prevented the effective utilization of visible and infrared light from sunlight, restricting it to absorbing only ultraviolet light. To improve photocatalytic efficiency, scientists have been researching new photocatalytic materials and adjusting the band structure through doping or heterostructures.
    In this study, the band gap of ZnIn2S4 was adjusted by adding different amounts of Ni doping, specifically 0.1, 0.2, and 0.3 mmol of nickel precursor, resulting in NixZnIn2S4 (x = 0.1, 0.2, 0.3). UV-vis measurement results showed that the band gap of NixZnIn2S4 decreased with increasing Ni doping. Additionally, photocatalytic hydrogen production measurements revealed that Ni0.2ZnIn2S4 had the highest yield of 2.37 mmol g-1 h-1, which is 6.24 times that of pure ZnIn2S4. This is attributed to the optimal band structure of Ni0.2ZnIn2S4, resulting in the lowest electron-hole pairs recombination rate and the best electron transfer rate. Furthermore, adding the cocatalyst Mo2C to form Mo2C/Ni0.2ZnIn2S4 composites resulted in a hydrogen production rate of 4.43 mmol g⁻¹ h⁻¹, which is 11.6 times higher than that of pure ZnIn2S4 and 1.87 times that of Ni0.2ZnIn2S4. The enhanced photocatalytic performance is attributed to the ability to enhance the composite's visible light absorption, reduce electron-hole recombination rates, and increase the active site, thereby improving hydrogen production performance.

    第一章 緒論與文獻探討 1 1.1 氫能源 1 1.2 水分解產氫 3 1.2.1 電分解 3 1.2.2 熱分解 3 1.2.3 機械分解 4 1.2.4 生物分解 4 1.2.5 光分解 4 1.3 光催化水分解產氫機制 6 1.4 犧牲試劑對光催化劑之影響 8 1.5 光催化劑的發展 9 1.6 異質結構 10 1.6.1 傳統能帶 10 1.6.2 Z-scheme 11 1.7 摻雜的功用 12 1.8 助催化劑的功能 13 1.9 ZnIn2S4材料介紹 15 1.9.1 ZnIn2S4基本性質 15 1.9.2 ZnIn2S4合成方法 15 1.9.3 ZnIn2S4作為光催化劑 17 1.9.4 Ni doped對ZnIn2S4的影響 18 1.10 Mo2C材料介紹 20 1.10.1 Mo2C基本性質 20 1.10.2 Mo2C合成方法 21 1.10.3 Mo2C作為助催化劑 22 1.11 研究動機 25 第二章 實驗方法與儀器 26 2.1 實驗架構 26 2.2 光催化劑之製備流程 27 2.2.1 Mo2C之合成 27 2.2.2 Mo2C/ NixZnIn2S4之合成 27 2.3 電化學分析之系統架設 29 2.4 光催化水解產氫反應 29 2.5 實驗儀器介紹 30 2.5.1 單區加熱爐管(Single Zone Furnace) 30 2.5.2 X光繞射分析儀(X-Ray Diffractometer, XRD) 31 2.5.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 32 2.5.4 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 33 2.5.5 X光光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 35 2.5.6 紫外光–可見光吸收光譜儀(UV-Visible Spectroscopy) 36 2.5.7 光致螢光光譜儀(Photoluminescence Spectroscopy, PL) 37 2.5.8 電化學分析儀(Electrochemical Analyzer) 38 2.5.9 氣相層析儀(Gas Chromatography, GC) 39 第三章 結果與討論 40 3.1 Mo2C之材料鑑定 40 3.1.1 XRD分析 40 3.1.2 SEM影像分析 41 3.1.3 TEM分析 41 3.1.4 XPS能譜分析 42 3.1.5 UV-vis光譜分析 43 3.2 ZnIn2S4之材料鑑定 45 3.2.1 XRD分析 45 3.2.2 SEM影像分析 46 3.2.3 TEM分析 46 3.2.4 XPS能譜分析 47 3.2.5 UV-vis光譜分析 48 3.3 NixZnIn2S4之材料鑑定 49 3.3.1 XRD分析 49 3.3.2 SEM影像分析 50 3.3.3 TEM分析 51 3.3.4 XPS能譜分析 52 3.3.5 UV-vis光譜分析 53 3.3.6 EIS分析 55 3.3.7 TPC分析 56 3.4 複合材料之材料鑑定 57 3.4.1 XRD分析 57 3.4.2 SEM影像分析 58 3.4.3 TEM分析 59 3.4.4 XPS能譜分析 61 3.4.5 UV-vis光譜分析 63 3.4.6 PL分析 64 3.4.7 EIS分析 65 3.4.8 TPC分析 66 3.5 光催化產氫反應 67 3.5.1 光催化產氫表現 67 3.5.2 能帶位置圖與機制 69 3.6 產氫反應比較 71 第四章 結論 72 第五章 未來展望 73 參考文獻 74

    1. T. S. Teets and D. G. Nocera, Chemical communications, 2011, 47, 9268-9274.
    2. C. J. Quarton, O. Tlili, L. Welder, C. Mansilla, H. Blanco, H. Heinrichs, J. Leaver, N. J. Samsatli, P. Lucchese and M. Robinius, Sustainable energy & fuels, 2020, 4, 80-95.
    3. J. O. Abe, A. Popoola, E. Ajenifuja and O. M. Popoola, International journal of hydrogen energy, 2019, 44, 15072-15086.
    4. P. Colbertaldo, S. B. Agustin, S. Campanari and J. Brouwer, International Journal of Hydrogen Energy, 2019, 44, 9558-9576.
    5. H. Ishaq, I. Dincer and C. Crawford, International Journal of Hydrogen Energy, 2022, 47, 26238-26264.
    6. Q. Guo, J. Geng, J. Pan, L. Zou, Y. Tian, B. Chi and J. Pu, Energy Reviews, 2023, 100037.
    7. A. Ersöz, International journal of hydrogen energy, 2008, 33, 7084-7094.
    8. L. Singh and Z. A. Wahid, Journal of Industrial and Engineering Chemistry, 2015, 21, 70-80.
    9. J. Chi and H. Yu, Chinese Journal of Catalysis, 2018, 39, 390-394.
    10. R. Bhandari, C. A. Trudewind and P. Zapp, Journal of cleaner production, 2014, 85, 151-163.
    11. J. E. Lee, I. Shafiq, M. Hussain, S. S. Lam, G. H. Rhee and Y.-K. Park, International Journal of Hydrogen Energy, 2022, 47, 4346-4356.
    12. S. S. Rashwan, I. Dincer and A. Mohany, Energy, 2020, 205, 118006.
    13. M. Azwar, M. Hussain and A. Abdul-Wahab, Renewable and Sustainable Energy Reviews, 2014, 31, 158-173.
    14. S. Sathish, D. Prabu, A. A. Renita, K. Murugesan, M. Rajasimman, S.-W. Joo, Y. Vasseghian and C. Wang, Fuel, 2023, 340, 127398.
    15. T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song and S. L. Suib, Molecules, 2016, 21, 900.
    16. D. Jing, L. Guo, L. Zhao, X. Zhang, H. Liu, M. Li, S. Shen, G. Liu, X. Hu and X. Zhang, International Journal of Hydrogen Energy, 2010, 35, 7087-7097.
    17. C. Wang, H. Liu, G. Wang, F. Ye, S. Tao, X. Li, P. Qiu and Z. Huang, Separation and Purification Technology, 2023, 324, 124457.
    18. N. Fajrina and M. Tahir, International Journal of Hydrogen Energy, 2019, 44, 540-577.
    19. J. Corredor, M. J. Rivero, C. M. Rangel, F. Gloaguen and I. Ortiz, Journal of Chemical Technology & Biotechnology, 2019, 94, 3049-3063.
    20. J. Schneider and D. W. Bahnemann, Journal, 2013, 4, 3479-3483.
    21. A. K. R. Police, S. Basavaraju, D. K. Valluri, S. Machiraju and J. S. Lee, Chemical engineering journal, 2014, 247, 152-160.
    22. X. Sui, H. Chen, H. Wang, A. Mahmood, Y. Li, Z. Li, T. Hou, H. Lin, S. Li and L. Wang, International Journal of Hydrogen Energy, 2022, 47, 13386-13398.
    23. M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang and K.-Q. Zhang, international journal of hydrogen energy, 2017, 42, 8418-8449.
    24. C. Acar, I. Dincer and G. F. Naterer, International Journal of Energy Research, 2016, 40, 1449-1473.
    25. S. Cao and J. Yu, The journal of physical chemistry letters, 2014, 5, 2101-2107.
    26. X. Ning and G. Lu, Nanoscale, 2020, 12, 1213-1223.
    27. X. Li, R. Shen, S. Ma, X. Chen and J. Xie, Applied Surface Science, 2018, 430, 53-107.
    28. N. Shehzad, M. Tahir, K. Johari, T. Murugesan and M. Hussain, Applied Surface Science, 2019, 463, 445-455.
    29. Y. Liu, S. Zhang, J. He, Z. M. Wang and Z. Liu, Nano-micro letters, 2019, 11, 1-24.
    30. K. Iwashina, A. Iwase, Y. H. Ng, R. Amal and A. Kudo, Journal of the American Chemical Society, 2015, 137, 604-607.
    31. R. Suresh, L. Gnanasekaran, S. Rajendran and M. Soto-Moscoso, Fuel, 2023, 348, 128528.
    32. M. Ismael, Solar Energy, 2020, 211, 522-546.
    33. M. Ismael, Fuel, 2021, 303, 121207.
    34. S. Ma, X. Xu, J. Xie and X. Li, Chinese Journal of Catalysis, 2017, 38, 1970-1980.
    35. M. A. Nazir, T. Najam, M. Altaf, K. Ahmad, I. Hossain, M. A. Assiri, M. S. Javed, A. ur Rehman and S. S. A. Shah, Journal of Alloys and Compounds, 2024, 174378.
    36. Q. Zhu, Z. Xu, B. Qiu, M. Xing and J. Zhang, Small, 2021, 17, 2101070.
    37. N. Xiao, S. Li, X. Li, L. Ge, Y. Gao and N. Li, Chinese Journal of Catalysis, 2020, 41, 642-671.
    38. C. Acar, I. Dincer and C. Zamfirescu, International Journal of Energy Research, 2014, 38, 1903-1920.
    39. Y. Song, J. Zhang, X. Dong and H. Li, Energy Technology, 2021, 9, 2100033.
    40. Y. Ren, J. J. Foo, D. Zeng and W. J. Ong, Small Structures, 2022, 3, 2200017.
    41. N. S. Chaudhari, A. P. Bhirud, R. S. Sonawane, L. K. Nikam, S. S. Warule, V. H. Rane and B. B. Kale, Green Chemistry, 2011, 13, 2500-2506.
    42. G. Wang, G. Chen, Y. Yu, X. Zhou and Y. Teng, RSC Advances, 2013, 3, 18579-18586.
    43. N. Ding, L. Zhang, H. Zhang, J. Shi, H. Wu, Y. Luo, D. Li and Q. Meng, Catalysis Communications, 2017, 100, 173-177.
    44. A. A. Khan, A. Chowdhury, S. Kumari and S. Hussain, Journal of Materials Chemistry A, 2020, 8, 1986-2000.
    45. M. Li, J. Su and L. Guo, International Journal of Hydrogen Energy, 2008, 33, 2891-2896.
    46. Z. Li, X. Wang, W. Tian, A. Meng and L. Yang, ACS Sustainable Chemistry & Engineering, 2019, 7, 20190-20201.
    47. M. Tan, Y. Ma, C. Yu, Q. Luan, J. Li, C. Liu, W. Dong, Y. Su, L. Qiao and L. Gao, Advanced Functional Materials, 2022, 32, 2111740.
    48. J.-Y. Li, M.-Y. Qi and Y.-J. Xu, Chinese Journal of Catalysis, 2022, 43, 1084-1091.
    49. Y. Zhang, Y. Wang, C. Guo and Y. Wang, Langmuir, 2022, 38, 12739-12756.
    50. S. Upadhyay and O. Pandey, Journal of The Electrochemical Society, 2022, 169, 016511.
    51. D. Vikraman, S. Hussain, K. Karuppasamy, A. Feroze, A. Kathalingam, A. Sanmugam, S.-H. Chun, J. Jung and H.-S. Kim, Applied Catalysis B: Environmental, 2020, 264, 118531.
    52. Y. Zhu, S. Wang, Y. Zhong, R. Cai, L. Li and Z. Shao, Journal of Power Sources, 2016, 307, 552-560.
    53. J. R. dos Santos Politi, F. Vines, J. A. Rodriguez and F. Illas, Physical Chemistry Chemical Physics, 2013, 15, 12617-12625.
    54. Y. Zhou, W. Wang, C. Zhang, D. Huang, C. Lai, M. Cheng, L. Qin, Y. Yang, C. Zhou and B. Li, Advances in Colloid and Interface Science, 2020, 279, 102144.
    55. Y. Ma, G. Guan, X. Hao, J. Cao and A. Abudula, Renewable and Sustainable Energy Reviews, 2017, 75, 1101-1129.
    56. Y. Mu, Y. Zhang, L. Fang, L. Liu, H. Zhang and Y. Wang, Electrochimica Acta, 2016, 215, 357-365.
    57. X. Xu, F. Nosheen and X. Wang, Chemistry of Materials, 2016, 28, 6313-6320.
    58. B. Ma, H. Xu, K. Lin, J. Li, H. Zhan, W. Liu and C. Li, ChemSusChem, 2016, 9, 820-824.
    59. J. Dong, Y. Shi, C. Huang, Q. Wu, T. Zeng and W. Yao, Applied Catalysis B: Environmental, 2019, 243, 27-35.
    60. Z. Yang, M. Li, S. Chen, S. Yang, F. Peng, J. Liao, Y. Fang, S. Zhang and S. Zhang, Advanced Functional Materials, 2023, 33, 2212746.
    61. H. Lin, S. Li, X. Sui, J. Gao, H. Wang, J. Xu, Y. Li and L. Wang, Journal of Alloys and Compounds, 2024, 976, 173049.
    62. J. Wu, B. Sun, H. Wang, Y. Li, Y. Zuo, W. Wang, H. Lin, S. Li and L. Wang, Journal of Materials Chemistry A, 2021, 9, 482-491.
    63. W. Liu, J. Chen, X. Pan, T. Wang and Y. Li, ChemCatChem, 2021, 13, 5148-5155.
    64. X. Shi, L. Mao, C. Dai, P. Yang, J. Zhang, F. Dong, L. Zheng, M. Fujitsuka and H. Zheng, Journal of Materials Chemistry A, 2020, 8, 13376-13384.
    65. D. Jing, M. Liu and L. Guo, Catalysis letters, 2010, 140, 167-171.
    66. K. Da, X. Mao, Y. Ma, L. Wu, Y. Li, S. Zou, S. Cao, J. Yang and X. Fan, Materials Today Communications, 2024, 109612.
    67. W. Ge, J. Song, S. Deng, K. Liu and P. Yang, Separation and Purification Technology, 2024, 328, 125059.
    68. Y. Xiao, H. Wang, Y. Jiang, W. Zhang, J. Zhang, X. Wu, Z. Liu and W. Deng, Journal of Colloid and Interface Science, 2022, 623, 109-123.
    69. Q. Li, C. Cui, H. Meng and J. Yu, Chemistry–An Asian Journal, 2014, 9, 1766-1770.
    70. D. Zhou, X. Xue, X. Wang, Q. Luan, A. Li, L. Zhang, B. Li, W. Dong, G. Wang and C. Hou, Applied Catalysis B: Environmental, 2022, 310, 121337.
    71. C. Li, X. Liu, G. Ding, P. Huo, Y. Yan, Y. Yan and G. Liao, Inorganic Chemistry, 2022, 61, 4681-4689.

    QR CODE