研究生: |
蔡嘉展 |
---|---|
論文名稱: |
蒸發器、膨脹閥與壓縮機之系統模擬---外均壓式膨脹閥調整控制與蒸發過程之熱流特性 Numerical Simulation of Evaporator、Expansion valve (with external equalizer) and Compressor Loop |
指導教授: |
陳理定
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 膨脹閥預壓量 、外均壓式 、冷凍系統數值模擬 、蒸發過程 |
外文關鍵詞: | external equalizer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨在於計算膨脹閥調整控制對蒸發過程熱流特性之影響,並考慮冷媒在蒸發器裡蒸發過程中之壓降,探討外均壓式膨脹閥調整對蒸發過程熱流特性之影響,進而提出相關設計理論基礎為目的。
在本論文中分別探討了不同的膨脹閥大小以及不同的膨脹閥預壓量對整個冷凍系統的影響,並分成實驗數據之趨勢觀測以及數值模擬計算部分,並建立一套完整的研究方法,來探討調整膨脹閥在冷凍系統中造成效率影響之機制。
在實驗結果中包含了數據的量測結果以及觀察膨脹閥的開度與系統中相關參數之變化趨勢。在數值的計算上包含了蒸發器、膨脹閥、壓縮機之單一以及系統匹配之相關數學方程式推導,並完成系統匹配後蒸發器內局部熱流特性的計算,以及收斂後之質量流率。
結果顯示,數值計算以及實驗數據之趨勢相當吻合,膨脹閥的鎖緊程度大約在4.5 ~ 5.5圈 (大約佔總開度的0.72 ~ 0.88) 蒸發器吸熱能力為最佳。
The scope of this research is concerned with the calculation of flow and heat transfer characteristics in evaporating for the adjustment and control of the expansion valve. The pressure drop during evaporation was considered and discussion of the effects of using external equalizer expansion valve on the flow and heat transfer characteristics of evaporation was used to form the basic of design theories.
This thesis discussed the effect of having different capacity and different volume pre-compression expansion valve on the entire refrigeration system. A trend formed from the experimental results and the calculation of numerical simulations is included. This allows the establishment of a complete research method to discuss the influence of efficiency with regulate of expansion valve for refrigeration system.
The result included the data from the experimental measurements and observations made on the trend change of parameters with the rate of expansion valve opening in the system. In numerical simulation, there are separate deductions of mathematical equations for the evaporator、the expansion valve and the compressor as well as a complete refrigeration system consisting of these components. We also obtained calculations for the flow and heat transfer characteristics and the converged mass flow rate.
The results revealed good agreement between numerical simulation and experimental measurements. The best absorption point is about in 4.5 ~ 5.5 degrees of closed (about in 0.72 ~ 0.88 of all opening rate).
1. 陳勇全, 膨脹閥、蒸發器與壓縮機在冷凍系統中的匹配系統模擬, 國立清華大學碩士論文, 2000.
2. Chen, J.C.. Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem. Proc. Dev., 5 : 322. , 1966.
3. Butterwoth, D., The correlation for cross flow pressure drops data by means of permeability concept. AERE report R9435. 1977.
4. Butterwoth, D.. Developments in the design of shell and tube condensers. ASME paper 77-WA/HT-24. , 1979.
5. Gungor, K.E., R.H.S. Winterton,. A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transfer, 29:351-358. 1986.
6. Cooper, M.G.. Saturation nucleate pool boiling – a simple correlation. Int. Chem. Engineering. Symp. Ser., 86:785-792, 1984.
7. Shah, M.M.,.Chart correlation for saturated boiling heat transfer: equations and further study. ASHRAE Transactions, 88(1):185-196. Atlanta: American Society of Heating, Refrigeration and Air-Conditioning Engineering, Inc. 1982.
8. Kandlikar, S.G.,.A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J. of HeatTransfer,112:219-228, 1990.
9. Liu, Z., Winterton, R.H.S.,. A general correlation for saturated and subcooled flow boiling in tubes and annuli based on a nucleate pool boiling. Int. J. Heat Mass Transfer, 34:2759-2765. 1991.
10. Steiner, D., Taborek, J.,. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transfer Engineering, 13:43-56. 1992.
11. T.N.Tandon and H.K. Varma and C.P.Gupta. Heat transfer during forced convection condensation inside horizontal tube. Int. J.Refrig. Vol.18.No.3. pp 210-214. Elsevier Science Ltd and IIR 1995.
12. Pieer,B. Flow resistance with boiling refrigerants. ASHRAE Journal,pp.58-77. Atlanta: American Society of Heating, Refrigeration and Air-Conditioning Engineering, Inc. 1964.
13. Greyvenstein, G.P., A computer simulation model for the design and optimization of heat pumps and refrigeration systems, South African Journal of Science, vol. 84(June),pp. 494-502. 1988.
14. S.M.sami.Ph.D.,P.Eng and J.Schnotale.Ph.D. and J.G.Smale,P.Eng. Prediction of the heat transfer characteristic of R-22/R-152A/R-114 and R-22 / R-152A / R-124.. ASHRAE Transaction,98:2.Atlanta: American Society of Heating, Refrigeration and Air-Conditioning Engineering,Inc..1992.
15. Cheng-Shu Kuo and Chi-chuan Wang. Horizontal flow boiling of R-22 and R407C in A 9.52 mm micro-fin tube. Applied thermal engineering Vol.16. Nos 8/9.pp.719-731.1996.
16. N.B.M. Stefanuk, J.d. Aplevich, Ph.D., P.Eng, M.renksizbulut, Ph.D., P.Eng,. Modeling and simulation of a superheat-controlled water-to-water heat pump, ASHRAE Transactions (3615), pp. 172-184, Atlanta: American Society of Heating, Refrigeration and Air-Conditioning Engineering,Inc.1993.
17. B. Ouazia and W.K. Snelson,. Predicting system performance of alternative refrigerants using a water-water heat pump , ASHRAE Transactions (3797),pp. 140-147, Atlanta: American Society of Heating, Refrigeration and Air-Conditioning Engineering,Inc.1994.
18. Wattelet, J., J.M. Jabardo, J.C.Chato, J.S. Panek, and A.L. Souza. 1992. Experimental evaluation of convective boiling of refrigerants HFC-134a and CFC-12. ASME, HTD-Vol. 197 , Two-Phase Flow and Heat Transfer.
19. 王啟川著,熱交換器設計, 五南出版圖書有限公司. 2001.
20. ASHRAE Handbook, Fundamentals, pp. 19.25-19.27, p. 4.7, Atlanta: American Society of Heating, Refrigeration and Air-Conditioning Engineering, Inc.1997.
21. Dr. Sadik Kakac. University of Miami Coral Gables, Florida 33124, U.S.A. 熱交換器設計 (Heat Exchange design course) 工業技術研究院能源與資源研究所 1990.5.
22. Yunus A. Cebgel & Michael A. Boles, “Thermodynamics,” chap11,pp535-569, McGraw-Hill Book Company.
23. W. F. Stoecker, J. W. Jones,. REFRIGERATION AND AIR CONDITIONING, Second Edition, 1983.
24. Thermostatic expansion valves with selective charges. SPORLAN valve company. 7525 sussex AVE. ST. LOUIS. MO.63143 314-647-2775.
25. ROY J.DOSSAT. Principle of Refrigeration. Third edition. Prentice Hall Career & Technology Englewood Cliffs,New Jersey 07632.1991.
26. FAYEC. Mc QUISTON JERALD D. PARKER. HEATING, VENTILATING, AND AIR CONDITIONING Analysis and Design. 1977.
27. T. N. Tandon, H. K. Varma and C.P. Gupta,. Heat transfer during forced convection condensation inside horizontal tube, Int. J. Refrig. Vol. No. 3, pp.210-214, 1994
28. ASHRAE Handbook Refrigeration, Atlanta: American Society of Heating, Refrigeration and Air-Conditioning Engineering, Inc.1998.
29. A. Feldman, C. Marvillet, M. Lebouche, . Nucleate and convective boiling in plate fin heat exchangers, International Journal of Heat and Mass Transfer 43 pp.3433-3442, 1999
30. ASHRAE Handbook, Fundamentals, Atlanta: American Society of Heating, Refrigeration and Air-Conditioning Engineering, Inc., 2001.
31. 許景琳, 冷凍系統之熵增最小化分析與設計, 國立清華大學碩士論文, 2002.
32. Chi-Chuan Wang and Ching-Shan Chiang and Jyh-Goang Yu. An experimental study of in-tube evaporation of R-22 inside a 6.5-mm smooth tube. Int Journal of heat and fluid flow 19(1998) 259-269.
33. A.Feldman and C.Marvillet and M.Lebouche. Nucleate and convective boiling in plate fin heat exchangers. Int Journal of heat and mass transfer 43 (2000) 3433-3442.
34. Shong-Leih Lee.Astrongly implicit solver for two-dimensional elliptic differential equations. Numerical Heat Teansfer,PartB,Vol.16.pp.161-178,1989.