簡易檢索 / 詳目顯示

研究生: 林毓錡
Lin, Yu-Ci
論文名稱: 絕對線型磁阻位置編碼器之設計與分析
Design and Analysis of Linear Absolute Position Encoders
指導教授: 王培仁
Wang, Pei-Jen
口試委員: 茆尚勳
Mao, Shang-Xun
王勝清
Wang, Sheng-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 78
中文關鍵詞: 絕對線型編碼器絕對編碼編碼論
外文關鍵詞: Absolute Linear Encoder, Absolute Encoding, De Bruijn Sequence
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前工業應用常見之編碼器結構可分為光學與磁性兩大類,光學編碼器雖在精度上高於磁性編碼器,但磁性編碼器較能承受較嚴峻的工作環境,且具有高剛性之機械結構,並保持良好解析精度,故在工業應用上,磁性編碼器仍具實務之競爭優勢,可為光學編碼器之互補應用產品。
    本論文之研究目的針對磁性編碼器中感應式線型磁阻絕對位置感測器,進行設計原理及編碼方式之研究,採用電腦輔助工程分析軟體建立完整尺身及感應線圈磁路模型,透過電磁場暫態分析與渦電流感應分析來模擬線型感測器。研究並針對絕對位置之編碼理論,提出一套基於傳統De Bruijn序列衍生之具系統性且可實施法則進行絕對位置編碼,於滿足絕對型編碼不得重複、尺槽挖孔均勻及連續孔槽小於4位元三項限制條件,可解決因加工應力尺身變形及環境溫度造成不均勻膨脹形成之精度誤差問題。期望最終完成試製尺身與線圈讀頭,並驗證電磁場分析之設計數據,達成高精度感應式線型磁阻型絕對位置感測器之研製工作。


    In the present, encoders employed for industrial applications are grouped based on two categories, namely optical and magnetic encoders. Although the optical are superior in precision to the magnetic ones, the latter could endure severe environment with highly rigid mechanical structure plus reasonable resolution and accuracy. Hence, the magnetic encoders are still highly competitive in harsh applications to complement the industrial applications niches of optical encoders.
    The objective of this thesis is to study absolute position linear encoders based on the theory of inductive reluctance from both operational principle and encoding methods. To analyze the magnetic circuits, commercial CAE packages are employed for model of the scale and sensing coils based on transient and eddy-current modes. To improve the precision, a novel absolute position encoding theory on De Bruijn Sequences are proposed with the constraints on unique code sequence, uniformly distributed pockets and smaller than 4-bit consecutive pockets to implement the systematic absolute codes. Finally, the ultimate goal is to prototype the scale and sensing coils so that the CAE results can be verified together with the precision absolute inductive linear encoders being manufactured and tested.

    摘要 ...............................................................i Abstract .........................................................ii 誌謝 .............................................................iii 目錄 ..............................................................iv 圖目錄 ............................................................vi 表目錄 ............................................................ix 符號文字對照表 .....................................................x 第一章 簡介 ........................................................1 1-1 研究背景 .......................................................1 1-2 研究目的 .......................................................3 1-3 文獻回顧 .......................................................3 1-3-1 激磁頻率 .....................................................4 1-3-2 不平衡振幅 ...................................................4 1-3-3 絕對型編碼器尺身與讀頭結構 ................................... 5 1-3-4 增量型訊號解調與解碼方式...................................... 6 1-3-5 絕對編碼字串排列 ............................................ 7 第二章 基礎編碼器理論介紹.......................................... 16 2-1 磁性編碼理論簡介 ............................................. 16 2-2 編碼器訊號解析原理 .............................................17 2-3 絕對位置編碼 ................................................. 19 2-4 渦電流損耗 ................................................... 21 2-5 磁性材料與磁滯現象 ............................................ 21 2-6 調變與解調原理 ............................................... 24 2-7 增量訊號解碼方法 ............................................. 26 第三章 模擬分析與設計 ............................................. 33 3-1 前言 ......................................................... 33 3-2 增量型編碼器二維模型設計與分析結果 ............................. 33 3-2 絕對型編碼器三維模型設計與分析結果 ............................. 34 3-2-1 絕對型編碼器暫態分析 ........................................ 34 3-2-2 絕對型編碼器渦電流分析 ...................................... 36 3-3 絕對型尺身編碼分析 ............................................ 37 3-3-1 線性回授位移暫存器 .......................................... 38 3-3-2 De Bruijn 數列變化 ......................................... 39 3-3-3 絕對位置編碼數列模擬結果..................................... 41 3-4 解調電路模擬與分析 ............................................ 43 第四章 直線尺身驗證 ............................................... 64 4-1 尺身加工與平台架設 ............................................ 64 4-2 讀頭軟板線圈設計與加工 ........................................ 66 第五章 結論與討論 ................................................ 74 5-1 結論 ......................................................... 74 5-2 未來展望 ..................................................... 75 參考文獻 ......................................................... 77

    [1]Bera, S. C., Sarkar, R., & Bhowmick, M. (2011), “Study of a modified differential inductance measurement circuit as position transducer of a power cylinder”, IEEE Trans. on Instrumentation and Measurement, 61(2), pp.530-538.
    [2]Aschenbrenner, B., & Zagar, B. G. (2014), “Analysis and validation of a planar high-frequency contactless absolute inductive position sensor”, IEEE Trans. on Instrumentation and Measurement, 64(3), pp.768-775.
    [3]“編碼器種類、原理與運動量測方法“, retrieve from September, 14, 2018, NATIONAL INSTRUMENT, http://www.ni.com/tutorial/7109/zht/表
    [4]Fericean, S., & Droxler, R. (2007), “New non-contacting inductive analog proximity and inductive linear displacement sensors for industrial automation”, IEEE Sensors Journal, 7(11), pp.1538-1545.
    [5]Norhisam, M., Norrimah, A., Wagiran, R., Sidek, R. M., Mariun, N., & Wakiwaka, H. (2008), “Consideration of theoretical equation for output voltage of linear displacement sensor using meander coil and pattern guide”, Sensors and Actuators A: Physical, 147(2), pp.470-473.
    [6]George, B., Tan, Z., & Nihtianov, S. (2017), “Advances in capacitive, eddy current, and magnetic displacement sensors and corresponding interfaces”, IEEE Trans. on Industrial Electronics, 64(12), pp.9595-9607.
    [7]Li, Y., Sheng, X., Lian, M., & Wang, Y. (2016), ”Influence of tilt angle on eddy current displacement measurement”, Nondestructive Testing and Evaluation, 31(4), pp.289-302.
    [8]Theodoulidis, T. (2005), ”Analytical model for tilted coils in eddy-current nondestructive inspection”, IEEE Trans. on Magnetics, 41(9), pp.2447-2454.
    [9]Vasiloiu, V. (2003). U.S. Patent No. 6,611,138. Washington, DC: U.S. Patent and Trademark Office.
    [10]Matsumoto, T., & Ohno, K. (1996). U.S. Patent No. 5,563,408. Washington, DC: U.S. Patent and Trademark Office.
    [11]Ohno, K., Hattori, T., & Matsumoto, T. (1991). U.S. Patent No. 5,068,529. Washington, DC: U.S. Patent and Trademark Office.
    [12]Vasiloiu, V., & Eisschiel, H. (2015). U.S. Patent No. 9,013,192. Washington, DC: U.S. Patent and Trademark Office.
    [13]洪麒富(2018)。”感應式磁阻型線性位置編碼器設計與分析”,國立清華大學動力機械工程學系碩士學位論文
    [14]Nagase, T., & Higashi, K. (1992). U.S. Patent No. 5,117,105. Washington, DC: U.S. Patent and Trademark Office.
    [15]Weiwen, L., Hui, Z., Wei, T., & Chunfeng, L. (2012). Research on combinatorial-code grating eddy-current absolute-position sensor. IEEE Transactions on Instrumentation and Measurement, 61(4), 1113-1124
    [16]方奕博(2019)。”感應式磁阻型絕對位置編碼器設計與分析”,國立清華大學動力機械工程學系碩士學位論文
    [17]RAMAMOORTHY, Ramesh. Reduce system costs with resolver-to-digital conversion implementation on C2000™ microcontrollers. Texas Instrument, 2014.
    [18]“Absolute encoder based on the AMOSIN-Inductive Measuring Principle“, retrieve from Octobor, 30, 2018, AmoAutomatisierung, http://www.amogmbh.com/fileadmin/amo/pro-dukte/prospekt/Prospekt_ABSOLUTE.pdf

    QR CODE