簡易檢索 / 詳目顯示

研究生: 林于峻
Yu-Chun Lin
論文名稱: 高效率靜態優先權分配的嵌入式系統低功率即時排程
Efficient Fixed-Priority Scheduling for Power-Aware Real-Time Embedded Systems
指導教授: 黃泰一
Tai-Yi Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 45
中文關鍵詞: 即時系統低功率
外文關鍵詞: hard real-time, low-power, Rate-Monotonic
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技日新月異,攜帶型消費電子產品,如:手機、PDA、…也日益普及。這些電子產品強調小巧攜帶方便,不可能設計過大的電池空間,而且電池也有一定的能源容量。所以如何降低能源消耗以延長系統運作時間就成為一門重要的議題。對這些電子產品而言,中央處理器是主要的能源消耗者。而動態電壓調整技術(Dynamic Voltage Scaling technology)動態地調整中央處理器電壓機制可以有效率地降低能源消耗。但是在這些產品內部會執行某些及時工作,不適當地降低電壓反而可能造成這些及時工作達不到及時要求。所以在此篇論文中,我們提出一個低功率及時排程演算法--LPRM(Low-Power Rate-Monotonic)。LPRM演算法不僅滿足及時工作的及時要求,而且還可以降低能源消耗。LPRM演算法是基於Rate Monotonic排程演算法衍生的低功率排程演算法。此外,LPRM演算法的運作簡單,僅需花費 O(n) 和 O(1) 時間複雜度在靜態和動態狀態下。因為LPRM有上述特性又不複雜,所以可以輕易地實作在現有的作業系統內。從實驗數據中得知,LPRM可節省25% ~ 35%的能源,而LPRM的進階延伸版本可以節省30% ~ 45%的能源。


    Energy consumption has become a critical issue for a portable and wireless embedded device because of its limited energy capacity of batteries. An application that runs on such a system often imposes real-time constraints that a task must complete its execution before its deadline. In this paper, we propose a low-power real-time scheduling algorithm called LPRM for fixed-priority periodic scheduling. LPRM, based on the technique of dynamic Voltage Scaling, is a low-power extension of the Rate-Monotonic algorithm. Due to its simplicity and low complexity, LPRM can be easily implemented in a power-aware real-time embedded system for energy reduction. To demonstrate its performance impact, we conduct a set of experiments to compare energy reduction of LPRM with other approaches. The experimental results show that LPRM, with a simple extension, achieves better energy reduction. Particularly, compared with the static speed approach, LPRM reduces energy consumption by 45% for a set of 25 tasks with variable execution times.

    Contents 1 Introduction ................................... 1 2 SystemModel ................................... 4 3 Low-Power Rate-Monotonic Algorithm .............. 7 4 Off-line Analysis Procedure ..................... 11 4.1 In the Case of pn <= 2 × p1 ................. 14 4.2 Generalization to Arbitrary Period ratios ... 34 5 Simulation Results .............................. 36 6 Related Work .................................... 41 7 Conclusions and Future Work ..................... 44 Bibliography ...................................... i

    [1] Hakan Aydin, Rami Melhem, Daniel Moss´e, and Pedro Mej´ıa-Alvarez. Optimal reward-based scheduling of periodic real-time tasks. In IEEE Real-Time Systems Symposium, pages 79–89, 1999.
    [2] Hakan Aydin, Rami Melhem, Daniel Moss´e, and Pedro Mej´ıa-Alvarez. Determining optimal processor speeds for periodic realtime tasks with different power characteristics. In Euromicro Conference on Real-Time Systems, pages 225–232, 2001.
    [3] Hakan Aydin, Rami Melhem, Daniel Moss´e, and Pedro Mej´ıa-Alvarez. Dynamic and aggressive scheduling techniques for poweraware real-time systems. In IEEE Real-Time Systems Symposium, pages 95–105, 2001.
    [4] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe M. Butazzo. Rate monotonic analysis: The hyperbolic bound. 52:933–942, 2003.
    [5] eCos. http://www.ecoscentric.com/.
    [6] Flavius Gruian. Hard real-time scheduling for low-energy using stochastic data and DVS processors. In International Symposium on Low Power Electronics and Design, pages 46–51, 2001.
    [7] Inki Hong, Miodrag Potkonjak, and Mani B. Srivastava. On-line scheduling of hard real-time tasks on variable voltage processor. In International Conference on Computer-Aided Design, pages 653–656, 1998.
    [8] John Lehoczky, Lui Sha, and Ye Ding. The rate monotonic
    scheduling algorithm: Exact characterization and average case behavior. In IEEE Real-Time Systems Symposium, pages 166–171, 1989.
    [9] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.
    [10] Jane W.S. Liu. Real-Time Systems. Prentice Hall, 2000.
    [11] µC/OS II. http://www.micrium.com/.
    [12] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for low-power embedded operating systems. In ACM Symposium on Operating Systems Principles, pages 89–102, 2001.
    [13] Gang Quan and Xiaobo (Sharon) Hu. Energy efficient fixed-priority scheduling for real-time systems on variable voltage processors. In Annual ACM IEEE Design Automation Conference, pages 828–833, 2001.
    [14] Gang Quan and Xiaobo Sharon Hu. Minimum energy fixed-priority scheduling for variable voltage processors. In Design, Automation, and Test in Europe, pages 782–787, 2002.
    [15] RTLinux. http://www.fsmlabs.com/.
    [16] Youngsoo Shin and Kiyoung Choi. Power conscious fixed priority scheduling for hard real-time systems. In Annual ACM IEEE Design Automation Conference, pages 134–139, 1999.
    [17] Youngsoo Shin, Kiyoung Choi, and Takayasu Sakurai. Power optimization of real-time embedded systems on variable speed processors. In International Conference on Computer Aided Design, pages 365–368, 2000.
    [18] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced cpu energy. In IEEE Annual Foundations of Computer Science, pages 374–382, 1995.
    [19] Han-Saem Yun and Jihong Kim. On energy-optimal voltage
    scheduling for fixed-priority hard real-time systems. ACM Transactions on Embedded Computing Systems, 2:393–430, 2003.
    [20] Fan Zhang and Samuel T. Chanson. Processor voltage scheduling for real-time tasks with non-preemptible sections. In IEEE Real-Time Systems Symposium, pages 235–245, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE