簡易檢索 / 詳目顯示

研究生: 李冠慶
Kuan Ching Lee
論文名稱: 光子晶體之低能帶理論
Theory of Low-lying Bands for Photonic Crystals
指導教授: 吳玉書
George Yu-Shu Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 51
中文關鍵詞: 光子晶體低能帶光子能隙
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子晶體最重要的特性就是它具有光子能隙,可以用來阻擋某頻率的光波通過該晶體,形成光子絕緣體,然而目前二維光子晶體的應用最為廣泛,因此計算二維光子能隙是重點所在,若能將這二維的計算簡化至一維的計算,則可以節省許多時間與精力。
    由於先前已做過一維等效模型(一種平均場理論)的研究,但該一維等效模型在TE mode (H-polarization)情形下,結果不盡理想,因此,本篇論文的研究目的在於改善先前的一維等效模型,期望能用此模型迅速且有效率地求得二維光子晶體低能帶能隙。


    Photonic band gap is the most important characteristic of photonic crystals. It is used to confine of EM waves within the crystal, so that photonic crystals perform like photonic insulators. At present, 2D photonic crystals are popularly applied. The focus is to calculate the photonic band gap. And if we can reduce the calculation of 2D to 1D, it will save us a lot of time and troubles.
    We had investigated a 1D effective model (a mean field theory) before, but the result of this kind of model for TE mode was not good enough. The purpose of this thesis is to improve the previous model and calculate the low-lying bands of photonic crystal simply and efficiently in a systematic way.

    Chapter 1:Introduction 1.1 光子能隙...........................................................................................P.1 1.2 光子晶體的應用..............................................................................P.3 1.3 研究動機..........................................................................................P.5 Chapter2:Theoretical Background 2.1 Maxwell equation到E-Polarization,H-Polarization.........................P.9 Chapter3:1D Effective Model 3.1 一維等效模型的架構......................... ..........................................P.12 3.2 General Case………………………………………………………P.18 3.3 Degenerate Perturbation at …………………………….P.26 3.4 Degenerate Perturbation of Full Band…………………………….P.29 Chapter4:Conclusions………………………………………………P.34 Appendix A…………………………………………………………...P.35 Appendix B…………………………………………………………...P.38 Appendix C…………………………………………………………...P.40 Appendix D…………………………………………………………...P.41 Appendix E…………………………………………………………...P.44 Reference……………………………………………………………..P.51

    [1] E. Yablonovitch, Phys. Rev. Lett. 58. 2059 (1987)

    [2] S. John, Phys. Rev. Lett. 58. 2486 (1987)

    [3] X. H. Hu and C. T. Chan, Appl. Phys. Lett. 85, 1520 (2004)

    [4] H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004)

    [5] S. Kim, G. P. Nordin, J. H. Jiang, and J. B. Cai, IEEE Photonics Technol. Lett. 16, 1846 (2004)

    [6] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, Nature London 430, 654 (2004)

    [7] L. J. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, Opt. Lett. 29, 1620 (2004)

    [8] S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Science 305, 227 (2004)

    [9] S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather, Opt. Lett. 29, 617 (2004)

    [10] C. Kittel , Introduction to Solid State Physics 8th ed. (2005)

    [11] R.F.Cregan et al., Science 285, 1537,” Single-Mode Photonic Band Gap Guidance of Light in Air ” (1999)

    [12] Li Chang et al., Journal of Applied Physics 101,1 (2007)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE