研究生: |
馬杜思 Poddar, Madhu Shree |
---|---|
論文名稱: |
仿肝腫瘤實驗室晶片應用於纖維母細胞與內皮細胞對酪氨酸激酶抑制劑產生之耐藥性研究 Liver-on-a-Chip Insights: Fibroblast and Endothelial-Induced Resistance to Tyrosine Kinase Inhibitors |
指導教授: |
劉承賢
Liu, Cheng-Hsien |
口試委員: |
陳致真
Chen, Chih-Chen 葉昭廷 Yeh, Chau-Ting 朱育德 Chu, Yu-De 涂夏爾 Punde, Tushar |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 肝细胞癌 、肝癌 、酪氨酸激酶抑制剂 、微流控生物芯片 、肿瘤内皮细胞 |
外文關鍵詞: | Microfluidic bio-chip, GelMA Cancer-Associated Fibroblast, Tumor-Endothelial Cells, AHSG, CLEC3B, CD105 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝癌是全球癌症相關死亡的主要原因之一,在標靶治療中,尤其是索拉非尼和樂伐替尼等酪胺酸激酶抑制劑 (TKI) 的抗藥性仍然是主要挑戰。本論文全面研究了肝癌細胞對TKIs的抗藥性機制,重點分析了腫瘤微環境(TME)中的兩個關鍵成分:癌症相關成纖維細胞(CAFs)和腫瘤內皮細胞(TECs)。通過使用肝臟晶片模型,本研究探討了這些基質細胞如何驅動TKIs的抗藥性,並提出了可能克服該抗藥性的治療策略。
第一項研究探討了CAFs在促進肝癌細胞對TKIs抗藥性中的作用。研究者設計了一個模擬肝臟結構的3D微流控晶片,以類比肝癌細胞與成纖維細胞之間的複雜相互作用,並再現肝小葉的六邊形結構。該模型進行了細胞活性、藥物反應及蛋白表達的詳細分析,涵蓋了2D和3D共培養環境的研究。結果顯示,當肝癌細胞與成纖維細胞共培養時,對索拉非尼和侖伐替尼表現出更強的抗藥性。通過死活細胞分析和分子檢測,確定了兩個關鍵的抗藥介質——AHSG和CLEC3B,它們在共培養介質中的表達顯著增加。功能實驗進一步證實,重組的AHSG和CLEC3B 在 2D 和 3D 培養中增強了抗藥性,突顯了它們在 CAFs 誘導的抗藥性中的關鍵作用。
第二項研究聚焦於TECs在促進TKIs抗藥性中的作用,特別是腫瘤血管生成及CD105的表達。CD105是一種參與內皮細胞增殖和血管生成的糖蛋白。本研究在包含肝細胞癌(HCC)細胞與內皮細胞的3D微流控共培養系統中,探討了CD105在肝腫瘤微環境中的作用及其對化療抗藥性的影響。研究結果顯示,CD105在肝臟腫瘤微環境中的TECs中高度表達,並與增強的血管生成活性及降低對TKIs的敏感性相關。通過靶向CD105的抗體治療,顯示出破壞腫瘤血管結構、提高TKIs療效的潛力,為抑制腫瘤進展和克服抗藥性提供了一種新的治療策略。
綜上所述,這些研究顯示腫瘤微環境中的CAFs和TECs如何通過不同但相互關聯的機制,共同增強肝癌細胞對TKIs的抗藥性。通過在微流控晶片中再現肝臟的微環境,本論文提供了對TKIs抗藥性分子機制的關鍵見解,並提出了改善肝癌治療效果的潛在策略。這些發現強調了標靶 TME 克服抗藥性的重要性,並為未來開發更有效的肝癌治療方法奠定了基礎。
Liver cancer is a leading cause of cancer-related deaths worldwide, with resistance to targeted therapies, particularly tyrosine kinase inhibitors (TKIs) such as Sorafenib and Lenvatinib, remaining a major therapeutic challenge. This thesis presents a comprehensive investigation of the mechanisms underlying hepatoma cell resistance to TKIs, focusing on two critical components of the tumor microenvironment (TME): cancer-associated fibroblasts (CAFs) and tumor endothelial cells (TECs). Utilizing a liver-on-a-chip model, this work examines how these stromal elements drive resistance to TKIs and explores potential therapeutic strategies to overcome this resistance.
The first study explores the role of CAFs in promoting resistance to TKIs in hepatoma cells. A 3D microfluidic chip imitating the liver architecture was designed to simulate the complex interactions between liver cancer cells and fibroblasts, replicating the hexagonal structure of liver lobules. This model enabled detailed analysis of cell viability, drug response, and protein expression in both 2D and 3D co-culture environments. The results demonstrated that co-cultured liver cancer cells exhibited increased resistance to Sorafenib and Lenvatinib when in the presence of fibroblasts. Through live/dead assays and molecular profiling, the study identified two key mediators of resistance, Fetuin-A (AHSG) and C-Type Lectin Domain Family 3 Member B (CLEC3B), which were significantly upregulated in the co-culture medium. Functional assays confirmed that recombinant AHSG and CLEC3B enhanced drug resistance in both 2D and 3D cultures, highlighting their critical role in CAF-induced resistance.
The second study investigates the role of TECs in fostering resistance to TKIs, with a particular focus on tumor angiogenesis and the expression of CD105, a glycoprotein involved in endothelial cell proliferation and vessel formation. Through a 3D microfluidic co-culture system incorporating hepatocellular carcinoma (HCC) cells and endothelial cells, this research examined the impact of CD105 on tumor angiogenesis and its contribution to chemoresistance. CD105 was found to be highly expressed in TECs within the liver TME, correlating with increased angiogenic activity and reduced sensitivity to TKIs. Targeting CD105 with antibodies showed potential in disrupting tumor vasculature and enhancing the efficacy of TKIs, offering a novel approach to inhibiting tumor progression and resistance mechanisms.
Together, these studies demonstrate how key stromal components of the TME—CAFs and TECs—collaborate to enhance hepatoma cell resistance to TKIs through distinct yet interconnected mechanisms. By replicating the liver's microenvironment in a microfluidic chip, this thesis provides crucial insights into the molecular drivers of TKI resistance and proposes potential strategies for improving the therapeutic outcomes of liver cancer treatment. The findings emphasize the importance of targeting the TME to overcome drug resistance and pave the way for future research aimed at developing more effective treatments for liver cancer.
1. Ananthakrishnan A, Gogineni V, Saeian K, Saeian k. Epidemiology of primary and secondary liver cancers. Seminars in interventional radiology; 2006; 23(1):47-63
2. Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Advances in cancer research. 2021;149:1-61.
3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-90.
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
5. Ong LC, Song IC, Jin Y, Kee IH, Siew E, Yu S, Thng CH, Huynh H, Chow PK. Effective inhibition of xenografts of hepatocellular carcinoma (HepG2) by rapamycin and bevacizumab in an intrahepatic model. Mol Imaging Biol. 2009;11(5):334-42.
6. Tunissiolli NM, Castanhole-Nunes MMU, Biselli-Chicote PM, Pavarino EC, da Silva RF, da Silva RC, et al. Hepatocellular Carcinoma: a Comprehensive Review of Biomarkers, Clinical Aspects, and Therapy. Asian Pac J Cancer Prev. 2017;18(4):863-72.
7. Lampimukhi M, Qassim T, Venu R, Pakhala N, Mylavarapu S, Perera T, et al. A Review of Incidence and Related Risk Factors in the Development of Hepatocellular Carcinoma. Cureus. 2023;15(11).
8. McGlynn KA, London WT. The global epidemiology of hepatocellular carcinoma: present and future. Clin Liver Dis. 2011;15(2):223-43.
9. Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol. 2013;47(S2-6).
10. Mao Y, Yang H, Xu H, Lu X, SangX, Du S, Zhao H, Chen W, Xu Y, Chi T, Yang Z, Cai J, Li H, Chen J, Zhong S, Mohanti SR, Lopez-Soler R, Millis JM, Huang J, Zhang H. Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Hepatology. 2014;59(12).
11. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264-73 e1.
12. Yang JD, Roberts LR. Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol. 2010;7(8):448-58.
13. Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64(5):1577-86.
14. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73-84.
15. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539-45.
16. Hui L, Zatloukal K, Scheuch H, Stepniak E, Wagner EF. Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Invest. 2008;118(12):3943-53.
17. J. West TRC, G. P. Aithal, K. M. Fleming. Risk of hepatocellular carcinoma among individuals with different aetiologies of cirrhosis: a population-based cohort study. alimentary pharmacology & therapeutics. 2017;45(7).
18. Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: A current molecular and clinical perspective. Liver Res. 2018;2(4):161-72.
19. Cancer Genome Atlas Research Network. Electronic address wbe, Cancer Genome Atlas Research N. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell. 2017;169(7):1327-41.
20. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69(18):7385-92.
21. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127(5 Suppl 1):S5-S16.
22. Wang ZG, He ZY, Chen YY, Gao H, Du XL. Incidence and survival outcomes of secondary liver cancer: a Surveillance Epidemiology and End Results database analysis. Transl Cancer Res. 2021;10(3):1273-83.
23. Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg. 2001;72(2):577-91.
24. Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science. 2002;295(5557):1009-14.
25. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518-24.
26. Ni M, Tong WH, Choudhury D, Rahim NAA, Iliescu C, Yu H. Cell culture on MEMS platforms: a review. Int J Mol Sci. 2009;10(12):5411-41.
27. Gu W, Zhu X, Futai N, Cho BS, Takayama S. Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci U S A. 2004;101(45):15861-6.
28. Kim L, Vahey MD, Lee HY, Voldman J. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip. 2006;6(3):394-406.
29. Philip J, Lee PJH, Rao VM, Lee LP. Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnology and bioengineering. 2005;94(1).
30. Tourovskaia A, Figueroa-Masot X, Folch A. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip. 2005;5(1):14-9.
31. Rowe L, Almasri M, Lee K, Fogleman N, Brewer GJ, Nam Y, et al. Active 3-D microscaffold system with fluid perfusion for culturing in vitro neuronal networks. Lab Chip. 2007;7(4):475-82.
32. Ryu W, Min SW, Hammerick KE, Vyakarnam M, Greco RS, Prinz FB. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers. Biomaterials. 2007;28(6):1174-84.
33. Vozzi G, Previti A, De Rossi D, Ahluwalia A. Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 2002;8(6):1089-98.
34. Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A, Upadhyaya A, et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng. 2002;78(3):257-69.
35. Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, et al. Study of osteoblastic cells in a microfluidic environment. Biomaterials. 2006;27(4):586-95.
36. Hung PJ, Lee PJ, Sabounchi P, Aghdam N, Lin R, Lee LP. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab on a Chip. 2005;5(1):44-8.
37. Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip. 2007;7(3):302-9.
38. Qiu L, Kong B, Kong T, Wang H. Recent advances in liver‐on‐chips: Design, fabrication, and applications. Smart Medicine. 2023;2(1):e20220010.
39. Sun L, Fan L, Bian F, Chen G, Wang Y, Zhao Y. MXene-integrated microneedle patches with innate molecule encapsulation for wound healing. Research. 2021.
40. Sun M, Han K, Hu R, Liu D, Fu W, Liu W. Advances in micro/nanoporous membranes for biomedical engineering. Advanced healthcare materials. 2021;10(7):2001545.
41. Wang H, Cai L, Zhang D, Shang L, Zhao Y. Responsive Janus structural color hydrogel micromotors for label-free multiplex assays. Research. 2021.
42. Fu F, Shang L, Chen Z, Yu Y, Zhao Y. Bioinspired living structural color hydrogels. Science Robotics. 2018;3(16):eaar8580.
43. Wang J, Shao C, Wang Y, Sun L, Zhao Y. Microfluidics for medical additive manufacturing. Engineering. 2020;6(11):1244-57.
44. Huang L, Jiang S, Shi Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001-2020). J Hematol Oncol. 2020;13(1):143.
45. Marin JJG, Macias RIR, Monte MJ, Romero MR, Asensio M, Sanchez-Martin A, et al. Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers (Basel). 2020;12(6).
46. Shao YY, Wang SY, Lin SM, Diagnosis G, Systemic Therapy G. Management consensus guideline for hepatocellular carcinoma: 2020 update on surveillance, diagnosis, and systemic treatment by the Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan. J Formos Med Assoc. 2021;120(4):1051-60.
47. Dimri M, Satyanarayana A. Molecular Signaling Pathways and Therapeutic Targets in Hepatocellular Carcinoma. Cancers (Basel). 2020;12(2).
48. Stacker SA, Achen MG. The VEGF signaling pathway in cancer: the road ahead. Chin J Cancer. 2013;32(6):297-302.
49. Mou L, Tian X, Zhou B, Zhan Y, Chen J, Lu Y, et al. Improving outcomes of tyrosine kinase inhibitors in hepatocellular carcinoma: new data and ongoing trials. Frontiers in Oncology. 2021;11:752725.
50. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5(1):145.
51. Frisbie L, Buckanovich RJ, Coffman L. Carcinoma-Associated Mesenchymal Stem/Stromal Cells: Architects of the Pro-tumorigenic Tumor Microenvironment. Stem Cells. 2022;40(8):705-15.
52. Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol. 2011;21(1):35-43.
53. Antonio Garcia-Gomez JR-U, Esteban Ballestar Epigenetic interplay between immune, stromal and cancer cells in the tumor microenvironment. Clinical Immunology. 2018;196.
54. Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022;612(7938):141-7.
55. Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol. 2022;13:992762.
56. Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, et al. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis. 2023;14(9):587.
57. Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17(11):1359-70.
58. Yang C, Passos Gibson V, Hardy P. The Role of MiR-181 Family Members in Endothelial Cell Dysfunction and Tumor Angiogenesis. Cells. 2022;11(10).
59. Yang H, Lee S, Lee S, Kim K, Yang Y, Kim JH, et al. Sox17 promotes tumor angiogenesis and destabilizes tumor vessels in mice. J Clin Invest. 2013;123(1):418-31.
60. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers. 2014;6(3):1769-92.
61. Zahreddine H, Borden KL. Mechanisms and insights into drug resistance in cancer. Frontiers in pharmacology. 2013;4:28.
62. Zwelling L, Hinds M, Chan D, Mayes J, Sie KL, Parker E, et al. Characterization of an amsacrine-resistant line of human leukemia cells: evidence for a drug-resistant form of topoisomerase II. Journal of Biological Chemistry. 1989;264(28):16411-20.
63. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer. 2013;13(10):714-26.
64. Chang G, Roth CB. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science. 2001;293(5536):1793-800.
65. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. Nature reviews cancer. 2002;2(1):48-58.
66. Sauna ZE, Ambudkar SV. Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein: the two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes. Journal of Biological Chemistry. 2001;276(15):11653-61.
67. Bonanno L, Favaretto A, Rosell R. Platinum drugs and DNA repair mechanisms in lung cancer. Anticancer research. 2014;34(1):493-501.
68. Selvakumaran M, Pisarcik DA, Bao R, Yeung AT, Hamilton TC. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer research. 2003;63(6):1311-6.
69. Olaussen KA, Dunant A, Fouret P, Brambilla E, André F, Haddad V, et al. DNA repair by ERCC1 in non–small-cell lung cancer and cisplatin-based adjuvant chemotherapy. New England Journal of Medicine. 2006;355(10):983-91.
70. Mataga MA, Rosenthal S, Heerboth S, Devalapalli A, Kokolus S, Evans LR, et al. Anti-breast cancer effects of histone deacetylase inhibitors and calpain inhibitor. Anticancer research. 2012;32(7):2523-9.
71. Sarkar S, Faller DV. T-oligos inhibit growth and induce apoptosis in human ovarian cancer cells. Oligonucleotides. 2011;21(1):47-53.
72. Sarkar S, Faller DV. Telomere-homologous G-rich oligonucleotides sensitize human ovarian cancer cells to TRAIL-induced growth inhibition and apoptosis. nucleic acid therapeutics. 2013;23(3):167-74.
73. Soria J-C, Smit E, Khayat D, Besse B, Yang X, Hsu C-P, et al. Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non–small-cell lung cancer. Journal of Clinical Oncology. 2010;28(9):1527-33
74. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nature reviews Clinical oncology. 2021;18(12):792-804.
75. Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. Journal of Experimental & Clinical Cancer Research. 2020;39(1):112.
76. Kalluri R. The biology and function of fibroblasts in cancer. Nature Reviews Cancer. 2016;16(9):582-98.
77. Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. Journal of Experimental Medicine. 2014;211(8):1503-23.
78. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer cell. 2014;25(6):719-34.
79. Allen AM, Therneau TM, Ahmed OT, Gidener T, Mara KC, Larson JJ, et al. Clinical course of non-alcoholic fatty liver disease and the implications for clinical trial design. Journal of hepatology. 2022;77(5):1237-45.
80. Han J, Wang B, Liu W, Wang S, Chen R, Chen M, et al. Declining disease burden of HCC in the U nited S tates, 1992–2017: A population‐based analysis. Hepatology. 2022;76(3):576-88.
81. Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, et al. Immunotherapies for hepatocellular carcinoma. Nature reviews Clinical oncology. 2022;19(3):151-72.
82. Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040. Journal of hepatology. 2022;77(6):1598-606.
83. Singal AG, Zhang E, Narasimman M, Rich NE, Waljee AK, Hoshida Y, et al. HCC surveillance improves early detection, curative treatment receipt, and survival in patients with cirrhosis: a meta-analysis. Journal of hepatology. 2022;77(1):128-39.
84. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Molecular cancer. 2021;20:1-30.
85. Remsing Rix LL, Sumi NJ, Hu Q, Desai B, Bryant AT, Li X, et al. IGF-binding proteins secreted by cancer-associated fibroblasts induce context-dependent drug sensitization of lung cancer cells. Science signaling. 2022;15(747):eabj5879.
86. Xu H, Zhao J, Li J, Zhu Z, Cui Z, Liu R, et al. Cancer associated fibroblast–derived CCL5 promotes hepatocellular carcinoma metastasis through activating HIF1α/ZEB1 axis. Cell death & disease. 2022;13(5):478.
87. Baglieri J, Brenner DA, Kisseleva T. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma. International journal of molecular sciences. 2019;20(7):1723.
88. Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiological reviews. 2020.
89. Foerster F, Gairing SJ, Ilyas SI, Galle PR. Emerging immunotherapy for HCC: A guide for hepatologists. Hepatology. 2022;75(6):1604-26.
90. Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomarker research. 2022;10(1):59.
91. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer. 2020;20(3):174-86.
92. Chung JY-F, Chan MK-K, Li JS-F, Chan AS-W, Tang PC-T, Leung K-T, et al. TGF-β signaling: from tissue fibrosis to tumor microenvironment. International Journal of Molecular Sciences. 2021;22(14):7575.
93. Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal transduction and targeted therapy. 2021;6(1):402.
94. Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduction and Targeted Therapy. 2021;6(1):218.
95. Guan J, Chen J. Mesenchymal stem cells in the tumor microenvironment. Biomedical reports. 2013;1(4):517-21.
96. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nature reviews cancer. 2006;6(5):392-401.
97. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nature medicine. 2013;19(11):1423-37.
98. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883-99.
99. Pietras K, Östman A. Hallmarks of cancer: interactions with the tumor stroma. Experimental cell research. 2010;316(8):1324-31.
100. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer cell. 2014;25(6):735-47.
101. Liu J, Chen S, Wang W, Ning B-F, Chen F, Shen W, et al. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer letters. 2016;379(1):49-59.
102. Cuestas ML, Oubiña JR, Mathet VL. Hepatocellular carcinoma and multidrug resistance: Past, present and new challenges for therapy improvement. 2015.
103. Bataller R, Brenner DA. Liver fibrosis. The Journal of clinical investigation. 2005;115(2):209-18.
104. Smith A, Baumgartner K, Bositis C. Cirrhosis: diagnosis and management. American family physician. 2019;100(12):759-70.
105. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature medicine. 1995;1(1):27-30.
106. Folkman J, editor Role of angiogenesis in tumor growth and metastasis. Seminars in oncology; 2002: Elsevier.
107. Reymond N, d'Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nature Reviews Cancer. 2013;13(12):858-70.
108. Morimoto M, Maishi N, Hida K. Acquisition of drug resistance in endothelial cells by tumor-derived extracellular vesicles and cancer progression. Cancer Drug Resistance. 2024;7.
109. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti‐cancer therapeutic agents. Bioessays. 1991;13(1):31-6.
110. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nature Reviews Cancer. 2005;5(4):275-84.
111. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer cell. 2005;8(4):299-309.
112. Akino T, Hida K, Hida Y, Tsuchiya K, Freedman D, Muraki C, et al. Cytogenetic abnormalities of tumor-associated endothelial cells in human malignant tumors. The American journal of pathology. 2009;175(6):2657-67.
113. Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer research. 2004;64(22):8249-55.
114. Matsuda K, Ohga N, Hida Y, Muraki C, Tsuchiya K, Kurosu T, et al. Isolated tumor endothelial cells maintain specific character during long-term culture. Biochemical and biophysical research communications. 2010;394(4):947-54.
115. Muraki C, Ohga N, Hida Y, Nishihara H, Kato Y, Tsuchiya K, et al. Cyclooxygenase‐2 inhibition causes antiangiogenic effects on tumor endothelial and vascular progenitor cells. International journal of cancer. 2012;130(1):59-70.
116. Kurosu T, Ohga N, Hida Y, Maishi N, Akiyama K, Kakuguchi W, et al. HuR keeps an angiogenic switch on by stabilising mRNA of VEGF and COX-2 in tumour endothelium. British journal of cancer. 2011;104(5):819-29.
117. Maishi N, Ohga N, Hida Y, Akiyama K, Kitayama K, Osawa T, et al. CXCR7: a novel tumor endothelial marker in renal cell carcinoma. Pathology international. 2012;62(5):309-17.
118. Yanagiya M, Dawood RI, Maishi N, Hida Y, Torii C, Annan DA, et al. Correlation between endothelial CXCR7 expression and clinicopathological factors in oral squamous cell carcinoma. Pathology International. 2021;71(6):383-91.
119. Maishi N, Ohba Y, Akiyama K, Ohga N, Hamada J-i, Nagao-Kitamoto H, et al. Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Scientific reports. 2016;6(1):28039.
120. Yamamoto K, Ohga N, Hida Y, Maishi N, Kawamoto T, Kitayama K, et al. Biglycan is a specific marker and an autocrine angiogenic factor of tumour endothelial cells. British journal of cancer. 2012;106(6):1214-23.
121. Cong L, Maishi N, Annan DA, Young MF, Morimoto H, Morimoto M, et al. Inhibition of stromal biglycan promotes normalization of the tumor microenvironment and enhances chemotherapeutic efficacy. Breast Cancer Research. 2021;23:1-17.
122. Osawa T, Ohga N, Akiyama K, Hida Y, Kitayama K, Kawamoto T, et al. Lysyl oxidase secreted by tumour endothelial cells promotes angiogenesis and metastasis. British journal of cancer. 2013;109(8):2237-47.
123. Tsumita T, Maishi N, Annan DAM, Towfik MA, Matsuda A, Onodera Y, et al. The oxidized‐LDL/LOX‐1 axis in tumor endothelial cells enhances metastasis by recruiting neutrophils and cancer cells. International journal of cancer. 2022;151(6):944-56.
124. Akiyama K, Maishi N, Ohga N, Hida Y, Ohba Y, Alam MT, et al. Inhibition of multidrug transporter in tumor endothelial cells enhances antiangiogenic effects of low-dose metronomic paclitaxel. The American Journal of Pathology. 2015;185(2):572-80.
125. Akiyama K, Ohga N, Hida Y, Kawamoto T, Sadamoto Y, Ishikawa S, et al. Tumor endothelial cells acquire drug resistance by MDR1 up-regulation via VEGF signaling in tumor microenvironment. The American journal of pathology. 2012;180(3):1283-93.
126. Kikuchi H, Maishi N, Annan DA, Alam MT, Dawood RIH, Sato M, et al. Chemotherapy-induced IL8 upregulates MDR1/ABCB1 in tumor blood vessels and results in unfavorable outcome. Cancer Research. 2020;80(14):2996-3008.
127. Naito H, Wakabayashi T, Kidoya H, Muramatsu F, Takara K, Eino D, et al. Endothelial side population cells contribute to tumor angiogenesis and antiangiogenic drug resistance. Cancer research. 2016;76(11):3200-10.
128. Xiong Y-Q, Sun H-C, Zhang W, Zhu X-D, Zhuang P-Y, Zhang J-B, et al. Human hepatocellular carcinoma tumor–derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clinical Cancer Research. 2009;15(15):4838-46.
129. Leibiger C, Kosyakova N, Mkrtchyan H, Glei M, Trifonov V, Liehr T. First molecular cytogenetic high resolution characterization of the NIH 3T3 cell line by murine multicolor banding. Journal of Histochemistry & Cytochemistry. 2013;61(4):306-12.
130. Rahimi AM, Cai M, Hoyer-Fender S. Heterogeneity of the NIH3T3 fibroblast cell line. Cells. 2022;11(17):2677.
131. Wang H-X, Gao X-W, Ren B, Cai Y, Li W-J, Yang Y-L, et al. Comparative analysis of different feeder layers with 3T3 fibroblasts for culturing rabbits limbal stem cells. International Journal of Ophthalmology. 2017;10(7):1021.
132. Arzumanian VA, Kiseleva OI, Poverennaya EV. The curious case of the HepG2 cell line: 40 years of expertise. International journal of molecular sciences. 2021;22(23):13135.
133. Takemura A, Gong S, Sato T, Kawaguchi M, Sekine S, Kazuki Y, et al. Evaluation of parent-and metabolite-induced mitochondrial toxicities using CYP-introduced HepG2 cells. Journal of Pharmaceutical Sciences. 2021;110(9):3306-12.
134. Wiśniewski JR, Vildhede A, Norén A, Artursson P. In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes. Journal of proteomics. 2016;136:234-47.
135. Caniuguir A, Krause BJ, Hernandez C, Uauy R, Casanello P. Markers of early endothelial dysfunction in intrauterine growth restriction-derived human umbilical vein endothelial cells revealed by 2D-DIGE and mass spectrometry analyses. Placenta. 2016;41:14-26.
136. Boerma M, Burton GR, Wang J, Fink LM, McGehee Jr RE, Hauer-Jensen M. Comparative expression profiling in primary and immortalized endothelial cells: changes in gene expression in response to hydroxy methylglutaryl-coenzyme A reductase inhibition. Blood coagulation & fibrinolysis. 2006;17(3):173-80.
137. Patel H, Chen J, Das KC, Kavdia M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovascular diabetology. 2013;12:1-14.
138. Walshe TE, dela Paz NG, D’Amore PA. The role of shear-induced transforming growth factor-β signaling in the endothelium. Arteriosclerosis, thrombosis, and vascular biology. 2013;33(11):2608-17.
139. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in advanced hepatocellular carcinoma. New England journal of medicine. 2008;359(4):378-90.
140. Cheng A-L, Kang Y-K, Chen Z, Tsao C-J, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. The lancet oncology. 2009;10(1):25-34.
141. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer research. 2004;64(19):7099-109.
142. Vogel A, Saborowski A. Current strategies for the treatment of intermediate and advanced hepatocellular carcinoma. Cancer treatment reviews. 2020;82:101946.
143. Abou-Alfa GK, Meyer T, Cheng A-L, El-Khoueiry AB, Rimassa L, Ryoo B-Y, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. New England Journal of Medicine. 2018;379(1):54-63.
144. Bruix J, Qin S, Merle P, Granito A, Huang Y-H, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. 2017;389(10064):56-66.
145. Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet. 2018;391(10126):1163-73.
146. Zhu AX, Park JO, Ryoo B-Y, Yen C-J, Poon R, Pastorelli D, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. The lancet oncology. 2015;16(7):859-70.
147. Xie D-Y, Ren Z-G, Zhou J, Fan J, Gao Q. 2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: updates and insights. Hepatobiliary surgery and nutrition. 2020;9(4):452.
148. Fu R, Jiang S, Li J, Chen H, Zhang X. Activation of the HGF/c-MET axis promotes lenvatinib resistance in hepatocellular carcinoma cells with high c-MET expression. Medical Oncology. 2020;37:1-7.
149. Jin H, Shi Y, Lv Y, Yuan S, Ramirez CF, Lieftink C, et al. EGFR activation limits the response of liver cancer to lenvatinib. Nature. 2021;595(7869):730-4.
150. Wei C-Y, Zhu M-X, Zhang P-F, Huang X-Y, Wan J-K, Yao X-Z, et al. PKCα/ZFP64/CSF1 axis resets the tumor microenvironment and fuels anti-PD1 resistance in hepatocellular carcinoma. Journal of Hepatology. 2022;77(1):163-76.
151. Chan T-S, Shaked Y, Tsai KK. Targeting the interplay between cancer fibroblasts, mesenchymal stem cells, and cancer stem cells in desmoplastic cancers. Frontiers in oncology. 2019;9:688.
152. Sperb N, Tsesmelis M, Wirth T. Crosstalk between tumor and stromal cells in pancreatic ductal adenocarcinoma. International journal of molecular sciences. 2020;21(15):5486.
153. Kanzaki R, Pietras K. Heterogeneity of cancer‐associated fibroblasts: opportunities for precision medicine. Cancer science. 2020;111(8):2708-17.
154. Coto-Llerena M, Ercan C, Kancherla V, Taha-Mehlitz S, Eppenberger-Castori S, Soysal SD, et al. High expression of FAP in colorectal cancer is associated with angiogenesis and immunoregulation processes. Frontiers in oncology. 2020;10:979.
155. Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U. Targeting of activated fibroblasts for imaging and therapy. EJNMMI radiopharmacy and chemistry. 2019;4:1-15.
156. Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: Cancer‐associated fibroblasts and their markers. International journal of cancer. 2020;146(4):895-905.
157. Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer and Metastasis Reviews. 2020;39(3):783-803.
158. Jacob M, Chang L, Pure E. Fibroblast activation protein in remodeling tissues. Current molecular medicine. 2012;12(10):1220-43.
159. Rovedatti L, Di Sabatino A, Knowles CH, Sengupta N, Biancheri P, Corazza GR, et al. Fibroblast activation protein expression in Crohn's disease strictures. Inflammatory bowel diseases. 2011;17(5):1251-3.
160. Liu F, Qi L, Liu B, Liu J, Zhang H, Che D, et al. Fibroblast activation protein overexpression and clinical implications in solid tumors: a meta-analysis. PloS one. 2015;10(3):e0116683.
161. Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts—heroes or villains? British journal of cancer. 2019;121(4):293-302.
162. Greimelmaier K, Klopp N, Mairinger E, Wessolly M, Borchert S, Steinborn J, et al. Fibroblast activation protein-α expression in fibroblasts is common in the tumor microenvironment of colorectal cancer and may serve as a therapeutic target. Pathology and Oncology Research. 2023;29.
163. Wang X, Niu R, Yang H, Lin Y, Hou H, Yang H. Fibroblast activation protein promotes progression of hepatocellular carcinoma via regulating the immunity. Cell Biology International. 2024;48(5):577-93.
164. Ketteler M, Bongartz P, Westenfeld R, Wildberger JE, Mahnken AH, Böhm R, et al. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. The Lancet. 2003;361(9360):827-33.
165. Wojtysiak-Duma B, Malecha-Jȩdraszek A, Burska A, Duma D, Donica H. Serum fetuin-A levels in patients with type 2 diabetes mellitus. Annales Universitatis Mariae Curie-Sklodowska, Sectio ddd: Pharmacia. 2010;23(2):93-9
166. Stefan N, Hennige AM, Staiger H, Machann Jr, Schick F, Kröber SM, et al. α2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes care. 2006;29(4):853-7.
167. Kaushik SV, Plaisance EP, Kim T, Huang EY, Mahurin AJ, Grandjean PW, et al. Extended‐release niacin decreases serum fetuin‐A concentrations in individuals with metabolic syndrome. Diabetes/metabolism research and reviews. 2009;25(5):427-34.
168. Singh M, Sharma PK, Garg VK, Mondal SC, Singh AK, Kumar N. Role of fetuin-A in atherosclerosis associated with diabetic patients. Journal of Pharmacy and Pharmacology. 2012;64(12):1703-8.
169. Dasgupta S, Bhattacharya S, Biswas A, Majumdar SS, Mukhopadhyay S, Ray S, et al. NF-κB mediates lipid-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. Biochemical journal. 2010;429(3):451-62.
170. Ix JH, Shlipak MG, Brandenburg VM, Ali S, Ketteler M, Whooley MA. Association between human fetuin-A and the metabolic syndrome: data from the Heart and Soul Study. Circulation. 2006;113(14):1760-7.
171. Xu Y, Xu M, Bi Y, Song A, Huang Y, Liu Y, et al. Serum fetuin-A is correlated with metabolic syndrome in middle-aged and elderly Chinese. Atherosclerosis. 2011;216(1):180-6.
172. Kalabay L, Jakab L, Prohászka Z, Füst G, Benkö Z, Telegdy L, et al. Human fetuin/α2HS-glycoprotein level as a novel indicator of liver cell function and short-term mortality in patients with liver cirrhosis and liver cancer. European journal of gastroenterology & hepatology. 2002;14(4):389-94.
173. Kalabay L, Szalay F, Nemesánszky E, Telegdy L, Jakab L, Romics L. Decreased serum alfa2-HS-glycoprotein concentration in patients with primary biliary cirrhosis. Journal of hepatology. 1997;26(6):1426-7.
174. Iba K, Abe Y, Chikenji T, Kanaya K, Chiba H, Sasaki K, et al. Delayed fracture healing in tetranectin-deficient mice. Journal of bone and mineral metabolism. 2013;31:399-408.
175. Chen Y, Han H, Yan X, Ding F, Su X, Wang H, et al. Tetranectin as a potential biomarker for stable coronary artery disease. Scientific reports. 2015;5(1):17632.
176. Chen Z, Wang E, Hu R, Sun Y, Zhang L, Jiang J, et al. Tetranectin gene deletion induces Parkinson's disease by enhancing neuronal apoptosis. Biochemical and Biophysical Research Communications. 2015;468(1-2):400-7.
177. Arellano-Garcia ME, Li R, Liu X, Xie Y, Yan X, Loo JA, et al. Identification of tetranectin as a potential biomarker for metastatic oral cancer. International journal of molecular sciences. 2010;11(9):3106-21.
178. Heeran MC, Rask L, Høgdall CK, Kjaer SK, Christensen L, Jensen A. Tetranectin positive expression in tumour tissue leads to longer survival in Danish women with ovarian cancer. Results from the ‘Malova’ovarian cancer study. Apmis. 2015;123(5):401-9.
179. Zhang X, Wan J-X, Ke Z-P, Wang F, Chai H-X, Liu J-Q. TMEM88, CCL14 and CLEC3B as prognostic biomarkers for prognosis and palindromia of human hepatocellular carcinoma. Tumor Biology. 2017;39(7):1010428317708900.
180. Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, et al. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clinical Cancer Research. 2008;14(7):1931-7
181. Duff SE, Li C, Garland JM, Kumar S. CD105 is important for angiogenesis: evidence and potential applications. The FASEB Journal. 2003;17(9):984-92.
182. Ho JW, Poon RT, Sun CK, Xue W-C, Fan S-T. Clinicopathological and prognostic implications of endoglin (CD105) expression in hepatocellular carcinoma and its adjacent non-tumorous liver. World journal of gastroenterology: WJG. 2005;11(2):176.
183. Paschoal JP, Bernardo V, Canedo NHS, Ribeiro OD, Caroli-Bottino A, Pannain VL. Microvascular density of regenerative nodule to small hepatocellular carcinoma by automated analysis using CD105 and CD34 immunoexpression. BMC cancer. 2014;14:1-7.
184. Tanaka F, Otake Y, Yanagihara K, Kawano Y, Miyahara R, Li M, et al. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clinical Cancer Research. 2001;7(11):3410-5.
185. Rosen LS, Hurwitz HI, Wong MK, Goldman J, Mendelson DS, Figg WD, et al. A phase I first-in-human study of TRC105 (Anti-Endoglin Antibody) in patients with advanced cancer. Clinical Cancer Research. 2012;18(17):4820-9.
186. Elnemr DM, Abdel-Azeez HA, Labib HA, Abo-Taleb FM. Clinical relevance of serum endoglin level in Egyptian hepatocellular carcinoma patients. Clinical Laboratory. 2012;58(9-10):1023-8.
187. Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, et al. Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. Journal of Biological Chemistry. 2011;286(34):30034-46.
188. Hawinkels LJ, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E, et al. Matrix metalloproteinase-14 (MT1-MMP)–mediated endoglin shedding inhibits tumor angiogenesis. Cancer research. 2010;70(10):4141-50.
189. Li C, Guo B, Wilson PB, Stewart A, Byrne G, Bundred N, et al. Plasma levels of soluble CD105 correlate with metastasis in patients with breast cancer. International Journal of Cancer. 2000;89(2):122-6.
190. Kasprzak A, Adamek A. Role of endoglin (CD105) in the progression of hepatocellular carcinoma and anti-angiogenic therapy. International Journal of Molecular Sciences. 2018;19(12):3887.
191. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 2008;48(4):1312-27.
192. Yang F, Van Meter TE, Buettner R, Hedvat M, Liang W, Kowolik CM, et al. Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Molecular cancer therapeutics. 2008;7(11):3519-26.
193. van Mourik JA, Leeksma O, Reinders J, De Groot PG, Zandbergen-Spaargaren J. Vascular endothelial cells synthesize a plasma membrane protein indistinguishable from the platelet membrane glycoprotein IIa. Journal of Biological Chemistry. 1985;260(20):11300-6.
194. Stockinger H, Gadd SJ, Eher R, Majdic O, Schreiber W, Kasinrerk W, et al. Molecular characterization and functional analysis of the leukocyte surface protein CD31. Journal of immunology (Baltimore, Md: 1950). 1990;145(11):3889-97.
195. Newman PJ, Berndt MC, Gorski J, White GC, Lyman S, Paddock C, et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science. 1990;247(4947):1219-22.
196. Newman PJ. Switched at birth: a new family for PECAM-1. The Journal of clinical investigation. 1999;103(1):5-9.
197. Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Current opinion in hematology. 2016;23(3):253-9.
198. Newton JP, Buckley CD, Jones EY, Simmons DL. Residues on both faces of the first immunoglobulin fold contribute to homophilic binding sites of PECAM-1/CD31. Journal of Biological Chemistry. 1997;272(33):20555-63.
199. Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41(6):1211-9.
200. Carr BI, Guerra V. Validation of a liver index and its significance for HCC aggressiveness. Journal of Gastrointestinal Cancer. 2017;48:262-6.
201. Carr BI, Guerra V. Serum albumin levels in relation to tumor parameters in hepatocellular carcinoma patients. The International journal of biological markers. 2017;32(4):391-6.
202. Nojiri S, Joh T. Albumin suppresses human hepatocellular carcinoma proliferation and the cell cycle. International journal of molecular sciences. 2014;15(3):5163-74.
203. Bokhari M, Carnachan RJ, Cameron NR, Przyborski SA. Culture of HepG2 liver cells on three dimensional polystyrene scaffolds enhances cell structure and function during toxicological challenge. Journal of anatomy. 2007;211(4):567-76.
204. Sell S. Alpha-fetoprotein, stem cells and cancer: how study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer. Tumor Biology. 2008;29(3):161-80.
205. Gibson-D'Ambrosio R, Crowe D, Shuler C, D'ambrosio SM. The establishment and continuous subculturing of normal human adult hepatocytes: expression of differentiated liver functions. Cell Biology and toxicology. 1993;9:385-403.
206. del Mar Rigual M, Sánchez PS, Djouder N. Is liver regeneration key in hepatocellular carcinoma development? Trends in Cancer. 2023;9(2):140-57.
207. Bale SS, Golberg I, Jindal R, McCarty WJ, Luitje M, Hegde M, et al. Long-term coculture strategies for primary hepatocytes and liver sinusoidal endothelial cells. Tissue Engineering Part C: Methods. 2015;21(4):413-22.
208. Deng J, Wei W, Chen Z, Lin B, Zhao W, Luo Y, et al. Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: A review. Micromachines. 2019;10(10):676.
209. Fang WB, Yao M, Cheng N. Priming cancer cells for drug resistance: role of the fibroblast niche. Frontiers in biology. 2014;9:114-26.
210. Greimelmaier K, Klopp N, Mairinger E, Wessolly M, Borchert S, Steinborn J, et al. Fibroblast activation protein-α expression in fibroblasts is common in the tumor microenvironment of colorectal cancer and may serve as a therapeutic target. Pathology and Oncology Research. 2023;29.
211. Wang X, Niu R, Yang H, Lin Y, Hou H, Yang H. Fibroblast activation protein promotes progression of hepatocellular carcinoma via regulating the immunity. Cell Biology International. 2024;48(5):577-93.
212. Chiew GGY, Wei N, Sultania S, Lim S, Luo KQ. Bioengineered three‐dimensional co‐culture of cancer cells and endothelial cells: A model system for dual analysis of tumor growth and angiogenesis. Biotechnology and bioengineering. 2017;114(8):1865-77.
213. Suzuki H, Iwamoto H, Seki T, Nakamura T, Masuda A, Sakaue T. Tumor‐derived insulin‐like growth factor‐binding protein‐1 contributes to resistance of hepatocellular carcinoma to tyrosine kinase inhibitors. Cancer Communications. 2023;43(4):415-34.