簡易檢索 / 詳目顯示

研究生: 陳莉菁
Chen, Li Jing
論文名稱: 微小核糖核酸在血管內皮細胞與平滑肌細胞中所扮演之角色
The role of microRNA in vascular endothelial cells and smooth muscle cells
指導教授: 裘正健
Chiu, Jeng Jiann
陳令儀
Chen, Lin Yi
口試委員: 王寧
吳志成
林秀芳
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 184
中文關鍵詞: 微小核糖核酸血管內皮細胞血管平滑肌細胞血流剪力動脈硬化
外文關鍵詞: microRNA, vascular endothelial cell, vascular smooth muscle cell, shear stress, atherosclerosis
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心血管疾病的共同特色是血管壁的慢性發炎反應,而且其併發症常引發病人的高死亡率。雖然目前已了解其致病機轉,但是許多新型分子層面的機制仍然被持續發現。目前已知異常的微小核糖核酸的表現與多種心血管疾病發生具有關連性,而且扮演重要的角色。微小核糖核酸可能藉由調控血管內皮細胞,平滑肌細胞與巨噬細胞的發炎反應與細胞增生等功能而調節心血管疾病的發生。本篇論文主要是探討微小核糖核酸分別在血管內皮細胞與平滑肌細胞所扮演之角色,以及微小核糖核酸調控動脈硬化症與血管再狹窄化所誘發的血管內膜增生之機制。 藉由微小核糖核酸晶片分析,微小核糖核酸146a/708,與血管內皮細胞與平滑肌細胞共同培養條件24小時後,會被大量誘發在血管內皮細胞中,而微小核糖核酸451/98則在共同培養6到12小時大量增加,這些表現在血管內皮細胞中的微小核糖核酸會隨著血管內皮細胞與平滑肌細胞共同培養時間的增加而遞減。剪力刺激24小時,微小核糖核酸146a/708/98/451會大量增加。在動物實驗中,這些微小核糖核酸會表現在經由氣球撐開術處理後,呈現正常血流速度的血管內皮層上,而非撐開術處理後,血流阻斷的血管內皮層上。這些微小核糖核酸會藉由負回饋調控機制作用其下游標的基因,進而造成抗發炎功能。此外,重要的剪力轉錄因子NF-E2-related factor-2(Nrf-2)會調控微小核糖核酸146a的大量表現,去除Nrf-2或微小核糖核酸146a則會增進氣球撐開術所誘發的血管內膜增生。大量表現微小核糖核酸146a則會抑制大鼠的氣球撐開術或小鼠的頸動脈結紮術所誘發的血管內膜增生。
    微小核糖核酸451會顯著的表現在人類冠狀動脈症血管中的中膜層,在平滑肌細胞體外培養時,纖維狀的膠原蛋白基質會誘發微小核糖核酸451的大量表現,進而抑制平滑肌細胞的增生與發炎反應。相反的,如果加入微小核糖核酸451抑制劑,則會增進平滑肌細胞的增生與發炎反應,進一步分析發現微小核糖核酸451抑制平滑肌細胞的增生與發炎反應的功能是藉由其下游基因Rab5a所調控。在動物實驗中,大量表現微小核糖核酸451或抑制下游基因Rab5a會抑制氣球撐開術所誘發的血管內膜增生。此外,檢測Apolipoprotein E基因缺陷鼠經高膽固醇餵食誘發動脈硬化症或冠狀動脈症病人的血漿,微小核糖核酸451的表現會低於正常組別。利用Apolipoprotein E基因缺陷鼠尾靜脈注射人工合成的微小核糖核酸451後,其經由高膽固醇餵食誘發動脈硬化症的斑塊會顯著的降低。
    這些研究結果指出,在血管內皮細胞上的微小核糖核酸146a與平滑肌細胞上的微小核糖核酸451透過其下游基因抑制血管細胞的增生與發炎反應,進而降低血管內膜的增生。此外,微小核糖核酸451有潛力作為檢測冠狀動脈疾病的生物標記,微小核糖核酸146a/451可能作為心血管疾病治療上的應用。


    Cardiovascular diseases are commonly appreciated to represent a chronic inflammatory response of the vascular wall, and its complications cause high mortality in patients. Although the pathophysiological mechanisms underlying cardiovascular diseases have been well-established, new molecules that control the progress of these pathologies are continuously discovered. Recently, the aberrant expression of microRNAs (miRNAs) has been revealed in diverse cardiovascular diseases, and recognized as crucial regulators in the progression of these cardiovascular diseases by regulating the function of endothelial cells (ECs), smooth muscle cells (SMCs) and macrophages. Convincingly, miRNAs regulate several cellular processes involved in the development of these cardiovascular diseases, such as vascular inflammation and proliferation. In this thesis, co-culturing ECs with synthetic SMCs under static condition causes initial increases of four anti-inflammatory miRNAs (146a/708/451/98) in ECs followed by decreases below the basal levels at 7 days; the increases for miR-146a/708 peaked at 24 h and those for miR-451/98 lasted for only 6-12 h. Shear stress (12 dynes/cm2) to co-cultured ECs for 24 h augments these four miRNA expressions. In vivo, these four miRNAs are not expressed in neointimal ECs in injured arteries under flow stagnation, but become highly expressed under physiological levels of flow four weeks after balloon injury. MiR-146a, -708, -451, and -98 target interleukin (IL)-1 receptor-associated kinase-1 (IRAK-1), inhibitor of nuclear factor-κB (NF-κB) kinase subunit-, IL-6 receptor, and conserved helix-loop-helix ubiquitous kinase, respectively, to inhibit NF-κB signaling, which exerts negative feedback control on the biogenesis of these miRNAs. NF-E2-related factor-2 (Nrf-2) is critical for shear-induction of miR-146a in co-cultured ECs. Silencing either Nrf-2 or miR-146a in ECs led to increased neointima formation of injured rat carotid artery under physiological levels of flow. Overexpressing miR-146a in ECs inhibits neointima formation of rat or mouse carotid artery induced by injury or blood flow cessation.
    Among these miRNAs, the miR-451 was significantly expressed in vascular SMCs of the medial layer in diseased human coronary arteries. In vitro study showed that culturing vascular SMCs on fibrillar collagen increased miR-451 level and suppressed proliferative and anti-inflammatory responses; these effects were diminished by anti-miR-451. Rab5a was inhibited by miR-451 directly targeting to lead to suppression of vascular SMC proliferation and inflammation. In vivo studies on rats indicated that overexpression of miR-451 and lentivirus-mediated Rab5a silencing markedly suppressed the neointima formation induced by balloon injury. The level of circulating miR-451 in blood plasma of patients with coronary artery disease (CAD) and apolipoprotein E knockout mice (ApoE-/-) fed with a high-cholesterol diet was significantly lower than control group. Increase of circulating miR-451 by tail vein injection with agomir-451 in ApoE-/- mice fed with a high-cholesterol diet for three months decreased atherosclerotic lesion formation.
    Taken together, these findings indicate that EC miR-146a and SMC miR-451, by respectively targeting IRAK-1 and Rab5a, respectively inhibits inflammation and proliferation in cultured EC and SMCs in vitro, and suppresses neointima formation in injured arteries in vivo. These results suggest the miR-451 may serve as potential biomarker for CAD, miR-146a and miR-451 as a potential target for treatment against neointima formation in cardiovascular diseases.

    TABLE OF CONTENTS Publication List..................................................................................................................IX Abstract..............................................................................................................................XI 中文摘要..........................................................................................................................XIII Abbreviation.....................................................................................................................XV 1. Introduction.....................................................................................................................1 1.1 Atherosclerosis.............................................................................................................2 1.1.1 Inflammation.....................................................................................................3 1.1.2 Fibrous plaques..................................................................................................4 1.1.3 Advanced lesions and plaque disruption...........................................................4 1.2 The role of hemodynamic forces in atherogenesis....................................................6 1.3 The EC dysfunction is an initial step for atherogenesis...........................................8 1.4 EC-VSMC interaction in response to shear stress.................................................10 1.5 Regulation of VSMC phenotype and proliferation in atherogenesis..................12 1.6 The role of miRNAs in cardiovascular diseases......................................................14 1.6.1 The biogenesis of miRNA..................................................................................14 1.6.2 The functions of miRNA in ECs response to shear stress..................................18 1.6.3 The functions of miRNA in VSMC....................................................................19 1.7 Aims of the study.......................................................................................................22 1.7.1 MiRNA mediation of endothelial inflammatory response to smooth muscle cells and its inhibition by atheroprotective shear stress................................22 1.7.2 MiR-451 protects against atherosclerotic plaque formation by directly targeting ras-associated protein 5a in vascular smooth muscle cells............23 2. Materials and Methods.................................................................................................24 2.1 Materials.....................................................................................................................25 2.1.1 Cells....................................................................................................................25 2.1.2 Reagents.............................................................................................................25 2.1.3 Antibodies..........................................................................................................26 2.1.4 Plasmids..............................................................................................................26 2.2 In vitro study..............................................................................................................27 2.2.1 EC-sSMC co-culture..........................................................................................27 2.2.2 Collagen matrices...............................................................................................27 2.2.3 Transfection........................................................................................................28 2.2.4 THP-1 Adhesion assay.......................................................................................28 2.2.5 HASMC proliferation in vitro assay..................................................................29 2.3 Co-culture flow system..............................................................................................29 2.4 RNA analysis..............................................................................................................31 2.4.1 MiRNA array analysis........................................................................................31 2.4.2 Reverse transcriptase-polymerase chain reaction (RT-PCR) ...........................31 2.4.3 Quantitative real-time PCR (qPCR) for miRNA and mRNA expressions.........31 2.4.4 MiRNA stability assay.......................................................................................32 2.5 MiRNA target gene study.........................................................................................32 2.5.1 MiRNA target prediction....................................................................................32 2.5.2 Immunoprecipitation of argonauts 2 (Ago2) complexes....................................32 2.5.3 3’-UTR luciferase reporter assays......................................................................33 2.6 Western blot analysis................................................................................................33 2.7 Cytoplasmic and nuclear protein extraction...........................................................34 2.8 Analysis of miR-146a promoter binding activity....................................................34 2.8.1 Electrophoretic mobility shift assay (EMSA) ...................................................34 2.8.2 Chromatin immunoprecipitation (ChIP) assay...................................................35 2.8.3 Luciferase reporter assays..................................................................................35 2.9 Lentiviral specific short hairpin RNA (shRNA) and mature miRNA..................36 2.10 Animal study............................................................................................................36 2.10.1 Animal strains...................................................................................................36 2.10.2 Rat carotid artery balloon injury model...........................................................37 2.10.3 Ultrasound measurement..................................................................................37 2.10.4 Secondary arteriotomy and delivery of lentiviral shRNA and miRNAs..........38 2.10.5 Local oligo delivery and Rab5a gene silence by lentiviral shRNA in vivo.....39 2.10.6 Mouse vascular injury and lentivirial transfection...........................................39 2.10.7 ApoE-/- mice in vivo assay...............................................................................40 2.11 MiRNA in situ hybridization..................................................................................40 2.12 Immunochemistry...................................................................................................41 2.13 En face preparation and staining...........................................................................41 2.14 Quantification of en face atherosclerotic plaque..................................................42 2.15 Morphometric analysis for neointimal formation................................................43 2.16 Human study population........................................................................................43 2.17 Blood plasma collection and circulating RNA extraction....................................44 2.18 Hemolysis assay.......................................................................................................44 2.19 Statistical analysis....................................................................................................45 3. Results............................................................................................................................46 3.1 MiRNA mediation of endothelial inflammatory response to smooth muscle cells and its inhibition by atheroprotective shear stress..................................................47 3.1.1 Atheroprotective shear stress augments miR-146a, -708, -451, and -98 expressions in ECs co-cultured with sSMCs......................................................47 3.1.2 MiR-146a, -708, -451, and -98 directly target IRAK, IKK-γ, IL-6R, and CHUK genes, respectively..............................................................................................48 3.1.3 MiR-146a, -708, -451, and -98 modulate NF-κB signaling, which exerts negative feedback control on the biogenesis of these miRNAs in co-cultured ECs.....................................................................................................................49 3.1.4 Nrf-2 is critical for shear-induction of miR-146a in ECs co-cultured with sSMCs.................................................................................................................50 3.1.5 Shear-inductions of miR-146a, -708, -451, and -98 in ECs co-cultured with sSMCs are regulated by integrins......................................................................51 3.1.6 MiR-146a, -708, -451, and -98 are not expressed in ECs of neointimal lesions in injured arteries under flow stagnation, but become highly expressed under physiological levels of flow...............................................................................52 3.1.7 Nrf-2 is involved in shear-induction of EC miR-146a in vivo...........................53 3.1.8 Administration of Lenti-miR-146a results in reductions in neointimal lesion formation in a mouse carotid artery ligation model............................................53 3.2 MiR-451 protects against atherosclerotic plaque formation by directly targeting ras-associated protein 5a in vascular smooth muscle cells....................55 3.2.1 MiR-451 is highly expressed in the medial VSMCs of diseased human coronary arteries in vivo and HASMCs cultured on fibrillar collagen in vitro..................55 3.2.2 MiR-451 inhibits Rab5a expression by targeting its 3’-UTR............................56 3.2.3 MiR-451 inhibits HASMC proliferation in vitro via Rab5a..............................56 3.2.4 MiR-451 inhibits VSMC inflammation in vitro via Rab5a................................57 3.2.5 MiR-451 reduces vascular neointima formation in vivo....................................57 3.2.6 Lenti-sh-Rab5a can mediate vascular neointima formation in vivo...................58 3.2.7 MiR-451 modulates atherosclerotic lesion development in vivo.......................59 4. Discussion......................................................................................................................61 4.1 MiRNA mediation of endothelial inflammatory response to smooth muscle cells and its inhibition by atheroprotective shear stress...............................................62 4.1.1 The anti-inflammatory role of miR-146a, -708, -451, and -98 in co-cultured ECs......................................................................................................................62 4.1.2 Shear stress induces miR-146a, -708, -451, and -98 expressions in ECs co-cultured with sSMCs......................................................................................63 4.1.3 Integrin and Nrf-2 are involved in regulation of shear stress-induced these miRNAs in co-cultured ECs................................................................................64 4.1.4 The effect of miR-146a overexpression on attenuating injury-induced neointima formation.............................................................................................................66 4.1.5 The clinical perspective of miR-146a.................................................................67 4.2 MiR-451 protects against atherosclerotic plaque formation by directly targeting ras-associated protein 5a in vascular smooth muscle cells....................69 4.2.1 The anti-proliferative and inflammatory role of miR-451 in VSMCs...............69 4.2.2 Rab5a is directly targeted by miR-451 in VSMCs.............................................71 4.2.3 MiR-451 may serve as a potential biomarker for CAD.....................................72 4.2.4 The safety of systemic administration of miRNA for therapeutic approach......73 5. Future Perspective........................................................................................................74 6. Reference.......................................................................................................................77 7. Tables and Figures.........................................................................................................92 8. Appendix.......................................................................................................................167

    1. Lusis AJ. Atherosclerosis. Nature. 2000;407:233-241
    2. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-874
    3. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327-387
    4. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340:115-126
    5. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685-1695
    6. Burke-Gaffney A, Brooks AV, Bogle RG. Regulation of chemokine expression in atherosclerosis. Vascul Pharmacol. 2002;38:283-292
    7. Steinberg D. Role of oxidized ldl and antioxidants in atherosclerosis. Adv Exp Med Biol. 1995;369:39-48
    8. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767-801
    9. Adiguzel E, Ahmad PJ, Franco C, Bendeck MP. Collagens in the progression and complications of atherosclerosis. Vasc Med. 2009;14:73-89
    10. Ross R. Atherosclerosis--an inflammatory disease. New Engl J Med. 1999;340:115-126
    11. Chien S. Mechanotransduction and endothelial cell homeostasis: The wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007;292:H1209-1224
    12. Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol. 2009;10:53-62
    13. Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Nature. 1969;223:1159-1160
    14. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci. 1971;177:109-159
    15. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035-2042
    16. Conway DE, Schwartz MA. Flow-dependent cellular mechanotransduction in atherosclerosis. J Cell Sci. 2013;126:5101-5109
    17. Chen LJ, Wei SY, Chiu JJ. Mechanical regulation of epigenetics in vascular biology and pathobiology. J Cell Mol Med. 2013;17:437-448
    18. Burrig KF. The endothelium of advanced arteriosclerotic plaques in humans. Atertio Thromb Vasc Biol. 1991;11:1678-1689
    19. Walpola PL, Gotlieb AI, Cybulsky MI, Langille BL. Expression of icam-1 and vcam-1 and monocyte adherence in arteries exposed to altered shear stress. Atertio Thromb Vasc Biol. 1995;15:2-10
    20. Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial ldl concentration precede development of fatty streak lesions. Arteriosclerosis. 1989;9:895-907
    21. Berk BC, Abe JI, Min W, Surapisitchat J, Yan C. Endothelial atheroprotective and anti-inflammatory mechanisms. Ann N Y Acad Sci. 2001;947:93-111
    22. Jo H, Sipos K, Go YM, Law R, Rong J, McDonald JM. Differential effect of shear stress on extracellular signal-regulated kinase and n-terminal jun kinase in endothelial cells. Gi2- and gbeta/gamma-dependent signaling pathways. J Biol Chem. 1997;272:1395-1401
    23. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: Site-selective responses to atherosclerotic modulators. Atertio Thromb Vasc Biol. 2004;24:12-22
    24. Truskey GA. Endothelial cell vascular smooth muscle cell co-culture assay for high throughput screening assays for discovery of anti-angiogenesis agents and other therapeutic molecules. Int J High Throughput Screen. 2010;2010:171-181
    25. Ziegler T, Alexander RW, Nerem RM. An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann Biomed Eng. 1995;23:216-225
    26. Redmond EM, Cahill PA, Sitzmann JV. Perfused transcapillary smooth muscle and endothelial cell co-culture--a novel in vitro model. In Vitro Cell Dev Biol Anim. 1995;31:601-609
    27. Redmond EM, Cullen JP, Cahill PA, Sitzmann JV, Stefansson S, Lawrence DA, Okada SS. Endothelial cells inhibit flow-induced smooth muscle cell migration: Role of plasminogen activator inhibitor-1. Circulation. 2001;103:597-603
    28. Nackman GB, Fillinger MF, Shafritz R, Wei T, Graham AM. Flow modulates endothelial regulation of smooth muscle cell proliferation: A new model. Surgery. 1998;124:353-361
    29. Fillinger MF, O'Connor SE, Wagner RJ, Cronenwett JL. The effect of endothelial cell coculture on smooth muscle cell proliferation. J Vasc Surg. 1993;17:1058-1068
    30. Chiu JJ, Chen LJ, Chen CN, Lee PL, Lee CI. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J Biomech. 2004;37:531-539
    31. Chiu JJ, Chen LJ, Lee PL, Lee CI, Lo LW, Usami S, Chien S. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood. 2003;101:2667-2674
    32. Chiu JJ, Chen LJ, Chang SF, Lee PL, Lee CI, Tsai MC, Lee DY, Hsieh HP, Usami S, Chien S. Shear stress inhibits smooth muscle cell-induced inflammatory gene expression in endothelial cells: Role of nf-kappab. Atertio Thromb Vasc Biol. 2005;25:963-969
    33. Chiu JJ, Chen LJ, Lee CI, Lee PL, Lee DY, Tsai MC, Lin CW, Usami S, Chien S. Mechanisms of induction of endothelial cell e-selectin expression by smooth muscle cells and its inhibition by shear stress. Blood. 2007;110:519-528
    34. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature. 1993;362:801-809
    35. Pons D, de Vries FR, van den Elsen PJ, Heijmans BT, Quax PH, Jukema JW. Epigenetic histone acetylation modifiers in vascular remodelling: New targets for therapy in cardiovascular disease. Eur Heart J. 2009;30:266-277
    36. Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007;15:100-108
    37. Hao H, Ropraz P, Verin V, Camenzind E, Geinoz A, Pepper MS, Gabbiani G, Bochaton-Piallat ML. Heterogeneity of smooth muscle cell populations cultured from pig coronary artery. Atertio Thromb Vasc Biol. 2002;22:1093-1099
    38. Birukov KG, Shirinsky VP, Stepanova OV, Tkachuk VA, Hahn AW, Resink TJ, Smirnov VN. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol Cell Biochem. 1995;144:131-139
    39. Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: New perspectives and therapeutic strategies. Nat Med. 2002;8:1249-1256
    40. Chen CN, Li YS, Yeh YT, Lee PL, Usami S, Chien S, Chiu JJ. Synergistic roles of platelet-derived growth factor-bb and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Proc Natl Acad Sci U S A. 2006;103:2665-2670
    41. Yeh YT, Lee CI, Lim SH, Chen LJ, Wang WL, Chuang YJ, Chiu JJ. Convergence of physical and chemical signaling in the modulation of vascular smooth muscle cell cycle and proliferation by fibrillar collagen-regulated p66shc. Biomaterials. 2012;33:6728-6738
    42. Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of cdk2 inhibitors. Cell. 1996;87:1069-1078
    43. Van Speybroeck L. From epigenesis to epigenetics: The case of c. H. Waddington. Ann N Y Acad Sci. 2002;981:61-81
    44. Goldberg AD, Allis CD, Bernstein E. Epigenetics: A landscape takes shape. Cell. 2007;128:635-638
    45. Lee RC, Feinbaum RL, Ambros V. The c. Elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell. 1993;75:843-854
    46. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z. Identification of hundreds of conserved and nonconserved human micrornas. Nat Genet. 2005;37:766-770
    47. Kozomara A, Griffiths-Jones S. Mirbase: Integrating microrna annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152-157
    48. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. Microrna genes are transcribed by rna polymerase ii. EMBO J. 2004;23:4051-4060
    49. Cai X, Hagedorn CH, Cullen BR. Human micrornas are processed from capped, polyadenylated transcripts that can also function as mrnas. RNA. 2004;10:1957-1966
    50. Borchert GM, Lanier W, Davidson BL. Rna polymerase iii transcribes human micrornas. Nat Struct Mol Biol. 2006;13:1097-1101
    51. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear rnase iii drosha initiates microrna processing. Nature. 2003;425:415-419
    52. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The microprocessor complex mediates the genesis of micrornas. Nature. 2004;432:235-240
    53. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The drosha-dgcr8 complex in primary microrna processing. Genes Dev. 2004;18:3016-3027
    54. Siomi H, Siomi MC. Posttranscriptional regulation of microrna biogenesis in animals. Mol Cell. 2010;38:323-332
    55. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved rna sequence to promote microrna maturation by drosha. Mol Cell. 2010;39:373-384
    56. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-micrornas and short hairpin rnas. Genes Dev. 2003;17:3011-3016
    57. Knight SW, Bass BL. A role for the rnase iii enzyme dcr-1 in rna interference and germ line development in caenorhabditis elegans. Science. 2001;293:2269-2271
    58. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the rna-interference enzyme dicer in the maturation of the let-7 small temporal rna. Science. 2001;293:834-838
    59. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human risc couples microrna biogenesis and posttranscriptional gene silencing. Cell. 2005;123:631-640
    60. Diederichs S, Haber DA. Dual role for argonautes in microrna processing and posttranscriptional regulation of microrna expression. Cell. 2007;131:1097-1108
    61. Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD. Sorting of drosophila small silencing rnas partitions microrna* strands into the rna interference pathway. RNA. 2010;16:43-56
    62. Okamura K, Liu N, Lai EC. Distinct mechanisms for microrna strand selection by drosophila argonautes. Mol Cell. 2009;36:431-444
    63. Zhang C. Micrornomics: A newly emerging approach for disease biology. Physiol Genomics. 2008;33:139-147
    64. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: Microrna biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228-234
    65. Chen LJ, Lim SH, Yeh YT, Lien SC, Chiu JJ. Roles of micrornas in atherosclerosis and restenosis. J Biomed Sci. 2012;19:79-92
    66. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. Microrna-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107:13450-13455
    67. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M, Wang S, Kiessling F, Olson EN, Weber C. Microrna-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing dlk1. Nat Med. 2014;20:368-376
    68. Fang Y, Davies PF. Site-specific microrna-92a regulation of kruppel-like factors 4 and 2 in atherosusceptible endothelium. Atertio Thromb Vasc Biol. 2012;32:979-987
    69. Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J, Li YS, Chien S, Wang N. Microrna-19a mediates the suppressive effect of laminar flow on cyclin d1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci U S A. 2010;107:3240-3244
    70. Wang KC, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam S, Wang N, Shyy JY, Li YS, Chien S. Role of microrna-23b in flow-regulation of rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci U S A. 2010;107:3234-3239
    71. Wu W, Xiao H, Laguna-Fernandez A, Villarreal G, Jr., Wang KC, Geary GG, Zhang Y, Wang WC, Huang HD, Zhou J, Li YS, Chien S, Garcia-Cardena G, Shyy JY. Flow-dependent regulation of kruppel-like factor 2 is mediated by microrna-92a. Circulation. 2011;124:633-641
    72. Zhou J, Wang KC, Wu W, Subramaniam S, Shyy JY, Chiu JJ, Li JY, Chien S. Microrna-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355-10360
    73. Ni CW, Qiu H, Jo H. Microrna-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am J Physiol Heart Circ Physiol. 2011;300:H1762-1769
    74. Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S. Atheroprotective communication between endothelial cells and smooth muscle cells through mirnas. Nat Cell Biol. 2012;14:249-256
    75. Zhou J, Li YS, Nguyen P, Wang KC, Weiss A, Kuo YC, Chiu JJ, Shyy JY, Chien S. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microrna-126: Role of shear stress. Circ Res. 2013;113:40-51
    76. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. Microrna expression signature and antisense-mediated depletion reveal an essential role of microrna in vascular neointimal lesion formation. Circ Res. 2007;100:1579-1588
    77. Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C. Microrna-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105:158-166
    78. Sun SG, Zheng B, Han M, Fang XM, Li HX, Miao SB, Su M, Han Y, Shi HJ, Wen JK. Mir-146a and kruppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO reports. 2011;12:56-62
    79. Wu WH, Hu CP, Chen XP, Zhang WF, Li XW, Xiong XM, Li YJ. Microrna-130a mediates proliferation of vascular smooth muscle cells in hypertension. Am J Hypertens. 2011;24:1087-1093
    80. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D. Mir-145 and mir-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705-710
    81. Calin GA, Croce CM. Microrna signatures in human cancers. Nat Rev Cancer. 2006;6:857-866
    82. Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM. Microrna-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011;226:1035-1043
    83. Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, Bochicchio A, Vicinanza C, Aquila I, Curcio A, Condorelli G, Indolfi C. Microrna-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 2011;109:880-893
    84. Li P, Zhu N, Yi B, Wang N, Chen M, You X, Zhao X, Solomides CC, Qin Y, Sun J. Microrna-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Circ Res. 2013;113:1117-1127
    85. Rasmussen KD, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, Horos R, Von Lindern M, Enright AJ, O'Carroll D. The mir-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010;207:1351-1358
    86. Pan X, Wang R, Wang ZX. The potential role of mir-451 in cancer diagnosis, prognosis, and therapy. Mol Cancer Ther. 2013;12:1153-1162
    87. Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, Li H, Weiss MJ, Ren X, Fan GC. Loss of the mir-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting rac-1. Cardiovasc Res. 2012;94:379-390
    88. Wu RM WM, Thrush A, Walton EF, Varkonyi-Gasic E Real time quantfication of plant mirna using universal probelibrary technology. Biochemica. 2007;2:12-15
    89. Leucht C, Bally-Cuif L. The universal probelibrary- a versatile tool for quantitative expression analysis in the zebrafish. Biochemica. 2007;2:16-18
    90. Kumar A, Lindner V. Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Atertio Thromb Vasc Biol. 1997;17:2238-2244
    91. Tulis DA. Rat carotid artery balloon injury model. Methods Mol Med. 2007;139:1-30
    92. Silahtaroglu AN, Nolting D, Dyrskjot L, Berezikov E, Moller M, Tommerup N, Kauppinen S. Detection of micrornas in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc. 2007;2:2520-2528
    93. Tangirala RK, Rubin EM, Palinski W. Quantitation of atherosclerosis in murine models: Correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in ldl receptor-deficient and apolipoprotein e-deficient mice. J Lipid Res. 1995;36:2320-2328
    94. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S. Circulating micrornas in patients with coronary artery disease. Circ Res. 2010;107:677-684
    95. Kirschner MB, Edelman JJ, Kao SC, Vallely MP, van Zandwijk N, Reid G. The impact of hemolysis on cell-free microrna biomarkers. Front Genet. 2013;4:94
    96. Taganov KD, Boldin MP, Chang KJ, Baltimore D. Nf-kappab-dependent induction of microrna mir-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481-12486
    97. Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C, Shyr C, Wakabayashi N, Kensler TW, Wasserman WW, Biswal S. Global mapping of binding sites for nrf2 identifies novel targets in cell survival response through chip-seq profiling and network analysis. Nucleic Acids Res. 2010;38:5718-5734
    98. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. Apoe-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb Vasc Biol. 1994;14:133-140
    99. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, Delgado-Olguin P, Cybulsky MI, Fish JE. Microrna-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO molecular medicine. 2013;5:949-966
    100. Liu Y, Chen Q, Song Y, Lai L, Wang J, Yu H, Cao X, Wang Q. Microrna-98 negatively regulates il-10 production and endotoxin tolerance in macrophages after lps stimulation. FEBS Lett. 2011;585:1963-1968
    101. Leung AK, Sharp PA. Microrna functions in stress responses. Mol Cell. 2010;40:205-215
    102. Huang Y, Crawford M, Higuita-Castro N, Nana-Sinkam P, Ghadiali SN. Mir-146a regulates mechanotransduction and pressure-induced inflammation in small airway epithelium. FASEB J. 2012;26:3351-3364
    103. Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of mir-221 and mir-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476-487
    104. Velichkova M, Hasson T. Keap1 in adhesion complexes. Cell Motil Cytoskeleton. 2003;56:109-119
    105. Boon RA, Horrevoets AJ. Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie. 2009;29:39-43
    106. Kipshidze N, Dangas G, Tsapenko M, Moses J, Leon MB, Kutryk M, Serruys P. Role of the endothelium in modulating neointimal formation: Vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol. 2004;44:733-739
    107. Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis: Pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol. 2012;59:1337-1349
    108. Rosenberger CM, Podyminogin RL, Navarro G, Zhao GW, Askovich PS, Weiss MJ, Aderem A. Mir-451 regulates dendritic cell cytokine responses to influenza infection. J Immunol. 2012;189:5965-5975
    109. Li X, Sanda T, Look AT, Novina CD, von Boehmer H. Repression of tumor suppressor mir-451 is essential for notch1-induced oncogenesis in t-all. J Exp Med. 2011;208:663-675
    110. Wang R, Wang ZX, Yang JS, Pan X, De W, Chen LB. Microrna-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (rab14). Oncogene. 2011;30:2644-2658
    111. Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N, Rechavi G, Givol D. Mir-451 and imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem Biophys Res Commun. 2008;376:86-90
    112. Turczynska KM, Bhattachariya A, Sall J, Goransson O, Sward K, Hellstrand P, Albinsson S. Stretch-sensitive down-regulation of the mir-144/451 cluster in vascular smooth muscle and its role in amp-activated protein kinase signaling. PloS one. 2013;8:e65135
    113. Murata K, Yoshitomi H, Furu M, Ishikawa M, Shibuya H, Ito H, Matsuda S. Mir-451 downregulates neutrophil chemotaxis via p38 mitogen-activated protein kinase. Arthritis Rheum. 2014;66:549-559
    114. Torres VA, Stupack DG. Rab5 in the regulation of cell motility and invasion. Curr Protein Pept Sci. 2011;12:43-51
    115. Neel NF, Schutyser E, Sai J, Fan GH, Richmond A. Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev. 2005;16:637-658
    116. Barbieri MA, Fernandez-Pol S, Hunker C, Horazdovsky BH, Stahl PD. Role of rab5 in egf receptor-mediated signal transduction. Eur J Cell Biol. 2004;83:305-314
    117. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microrna: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31:659-666
    118. Pase L, Layton JE, Kloosterman WP, Carradice D, Waterhouse PM, Lieschke GJ. Mir-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood. 2009;113:1794-1804
    119. Zhang Z, Luo X, Ding S, Chen J, Chen T, Chen X, Zha H, Yao L, He X, Peng H. Microrna-451 regulates p38 mapk signaling by targeting of ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett. 2012;586:20-26
    120. Condorelli G, Latronico MV, Cavarretta E. Micrornas in cardiovascular diseases: Current knowledge and the road ahead. J Am Coll Cardiol. 2014;63:2177-2187
    121. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, Sun G, Tay J, Linsley PS, Baltimore D. Mir-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208:1189-1201
    122. Zhao JL, Rao DS, Boldin MP, Taganov KD, O'Connell RM, Baltimore D. Nf-kappab dysregulation in microrna-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A. 2011;108:9184-9189
    123. Horie T, Baba O, Kuwabara Y, Chujo Y, Watanabe S, Kinoshita M, Horiguchi M, Nakamura T, Chonabayashi K, Hishizawa M, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K. Microrna-33 deficiency reduces the progression of atherosclerotic plaque in apoe-/- mice. J Am Heart Assoc. 2012;1:e003376
    124. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, Heyll K, Gremse F, Kiessling F, Grommes J, Weber C, Schober A. Microrna-155 promotes atherosclerosis by repressing bcl6 in macrophages. J Clin Invest. 2012;122:4190-4202

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE