簡易檢索 / 詳目顯示

研究生: 張晏誠
Chang, Yen-Cheng
論文名稱: 溶液相銅奈米線之合成與其於透明導電電極上的應用
The Synthesis of Copper Nanowire in Solution Phase and their Application in Transparent Conductive Electrode
指導教授: 段興宇
口試委員: 段興宇
湯學成
曾院介
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 57
中文關鍵詞: 溶液相奈米線透明導電電極
外文關鍵詞: solution phase, nanowire, transparent conductive electrode
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究中,細、長且分散良好的銅奈米線可藉由晶種促進生長機制於有機相中得到。銅奈米線平均長度約為37.7μm,平均直徑約為46nm,其長寬比高達820為相當高的一個值。對奈米線導電膜而言,奈米線長度越長有利於片電阻的下降。我們以簡單、易操作且低成本的噴塗塗佈(spray coating)製備透明導電電極且詳細的研究他們的電性與穿透度的表現。在光電性質上,我們的直流導電率和光學導電率最好可達到比值(σDC/σOp)逼近300,這個數值僅次於銀奈米線導電玻璃。穿透度90%片電阻50Ω/sq的透明導電電極可被製備。另外,我們也測試了銅奈米線薄膜在大氣環境下的穩定性,經過一個多月的放置片電阻只有小幅度上升,具有一定的電性穩定性。


    In this study, thin, long, and well-dispersed copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowire are about 37.7 μm and 46 nm with a high aspect ratio of 820. These wires were used for nanowire conducting films since their relatively long length is advantage in lowering the sheet resistance. Transparent conducting copper nanowire electrodes were prepared by a simple, facile and low cost spray coating method and their properties were characterized. Transparent electrode with optical transmittance and sheet resistance of 90% and 50Ω/sq was obtained. A relatively high value of 300 for the optoeletricial property, σDC/σOp, was obtained, only inferior to silver nanowire-based conducting glass. Moreover, the copper nanowire films maintained their electrical stabilities upon exposed to the ambient over more than one month.

    中文摘要 英文摘要 圖表目綠 第一章 文獻回顧 1 1-1 前言 1 1-2 透明導電金屬氧化物(Transparent Conductive Oxide, TCO) 2 1-3 奈米碳管(Carbon Nanotube,CNT) 3 1-4 石墨烯(Graphene) 5 1-5 金屬奈米結構(Metallic Nanostructures) 9 1-5.1 金屬薄膜(Thin Metal Films) 9 1-5.2 金屬網柵 (patterned metal grids) 10 1-5.3金屬奈米線(Metallic nanowires) 12 1-6 新興材料應用於太陽能電池 18 1-7 奈米線長度直徑控制及其對透明導電電極之影響…………20 1-7.1奈米線長度對透明導電電極之影響 …………………..20 1-7.2奈米線直徑對透明導電電極之影響……………………22 1-7.3溫度對奈米線直徑之影響………………………………24 1-8 實驗動機 25 第二章 實驗步驟及方法 27 2-1 實驗器材與藥品 27 2-2 銅奈米線合成: 28 2-3 銅線導電玻璃製作 28 2-4實驗分析儀器 30 第三章 結果與討論 33 第四章 結論 53 第五章 參考文獻 54 圖表目錄 圖1-1 1992年到2012年銦價的變動……………………….…………..2 圖1-3(a)目前來講最高片電阻/穿透度的奈米碳管導電玻璃 (b)經由a轉換成σDC/σOp………………………………………………………....5 圖1-4.1以捲軸式製程在銅箔上製作graphene薄膜示意圖;過程包含高分子支撐膜、銅箔的去除以及轉印等………………….…………...6 圖1-4.2長達30-inch 的透明graphene薄膜…………………..………7 圖1-4.3不同ultra large GO密度下其排列分布的情形………..…...…8 圖1-5.1(a)鎳(Ni)薄膜在波長0~2500nm之穿透度曲線,Ni厚度在2nm時穿透度約為80%左右,厚度來到5nm時穿透度降低至60%,厚度來到10nm時穿透度只剩下40%,而ITO之穿透度隨著波長的上升明顯下降…………………………………………………………………...9 圖1-5.2模板之SEM影像……….…………………………………….11 圖1-5.3製作PDMS模組和銅奈米線轉印示意圖(a)利用NIL技術作出阻隔模板(b)將PDMS滴在沉積在模板上並進行烘烤,第一層先滴上高模數的PDMS在650C進行5分鐘的烘烤,接著在滴上商業用的PDMS(sylgard184)在650C進行2小時的烘烤用來支撐第一層的PDMS(c)在溫度下降後將PDMS從模板中取出(d)以電子束(electron-beam)先後沉積厚度40 nm 的銅和2 nm鎳 (e)在10 psi 1000C下銅網轉印到經過PEDOT:PSS塗佈之PET基板(f)最後將PDMS脫離即完成……………………………………………………..11 圖1-5.4(a)散佈於溶劑中之銀奈米線(b)PET塑膠基板放置在玻璃上,以Meyer rod進行塗佈,所得膜後大約在4~60μm之間………………13 圖1-5.5以PET為基板,做出10cm X 10cm大小的之銀奈米線薄膜 (T=92%@550nm Rs=400Ω/sq)………………..………………………..13 圖1-5.6 (a)奈米線網狀金銀合金示意圖1(b)片電阻對穿透度(@550nm) 分別為銀奈米線、奈米碳管、ITO和銀薄膜………………………….15 圖1-5.7(a)奈米線多次生長示意圖(b)一次生長的銀奈米線,長度大都低於20μm (c)經過七次後之銀奈米線,長度已高於50μm……….…15 圖1-5.8 (a)Cu NF合成示意圖,第一步為利用電紡織將Cu的前驅物(CuAc2)和高分子(PVA)沉積在基板上,此時NFs為藍色,第二步在空氣中經過5000C的高溫反應2小時去除高分子後形成CuO NFs(黑色),最後在氫氣環境下以3000C燒結CuO NFs還原成Cu NFs(紅色)(b)上圖為銀奈米線之交會處(junction),下圖為Cu NFs 交會處融合(fused junction)圖(c)以AFM儀器對Cu NFs進行高度分析……………...…17 圖1-6(a)分別以CNT和ITO為TCE製備的有機太陽能電池結構圖,以及其I-V曲線 (b)黑色、綠色、紅色曲線分別代表經過400、800、1200彎曲之太陽能電池I-V曲線,可看到經過多次彎曲後電流密度仍保有原本五成以上 (c)分別以銀線網柵和ITO為TCE製備的有機太陽能電池I-V曲線,由於銀線的電漿共振效應使得效率提升,優於以ITO為TCE之太陽能電池 (d) 以Cu NFs為TCE製備的有機太陽能電池結構圖,以及其I-V曲線…………………………………………20 圖1-7.1(a)穿透度隨著覆蓋率上升而下降(b)片電阻對奈米線覆蓋率之作圖,可看到在相同覆蓋率時較長的奈米線擁有較好的導電性(c)、(d) 於光學顯微鏡下(暗場)不同長度的銀奈米線於基板上的分布情形,可看到較長的奈米線相互重疊的部分較多,使其在相同穿透度時保有較低的片電阻…………………………………………….…………….…22 圖1-7.2σDCA/σext對奈米線直徑做圖……………………………….…24 圖1-7.3不同直徑之奈米線於相同覆蓋率下之示意圖…………….…24 圖1-7.4在不同溫度下反應時間對直徑之作圖…………………….…25 圖1-8不同裝置對電極的片電阻和穿透度需求………………………26 圖2-1銅奈米線合成流程圖……………………………………………30 圖2-2實驗流程圖………………………………………………………30 圖2-3校正因子換算表…………………………………………………32 圖3-1 (a)銅奈米線生長示意圖,第一階段前驅物裂解生five –twinned結構的銅奈米粒子,第二階段為OLA包覆在five –twinned的奈米粒子其(1 0 0)面,使其往(1 1 1)面生長。不同反應溫度下之銅奈米線SEM影像 (倍率5000倍)(b)2500C (c)2600 C (d)2700C…………………..…35 圖3-2(a)銅奈米線低倍率(2000倍)SEM影像(b)銅奈米線高倍率(50000倍)SEM影像(c) 奈米線之XRD pattern。波峰皆對應到(111)、(200)、(220)的位置,顯示其的確為銅奈米線………..………………………35 圖3-3不同直徑之奈米線於相同覆蓋率下之示意圖…………………36 圖3-4(a)銅奈米線直徑統計,平均直徑為46`nm(b)銅奈米線長度統計,平均長度為37.7μm…………………….………………………………39 圖3-5(a)(b)(c)為銅奈米線於TEM下拍攝之影像,(d)為銅奈米線於HRTEM下拍攝到銅奈米線之晶格,其為高結晶性之銅奈米線 (e)銅奈米線之diffraction pattern,其depth spacing皆可對應到JCPDS 85-1326中 (111)、(200)、(220)的訊號(波峰位置43.356、50.493、74.196)…………………………………………………………..………39 圖3-6單根銅奈米線(直徑50nm,長度30μm銅奈米線)電流電壓圖...41 圖3-7大量合成之銅奈米線和其SEM影像。(a)批次反應使得只要反應器夠大,就可進行大量銅奈米線合成(b)大量銅奈米線收集於塑膠培養皿中(c)、(d)大量的銅奈米線SEM影像…………………………42 圖3-8銅線導電電極製作示意圖………………………………………43 圖3-9銅線導電電極數位影像和SEM影像(a) 17.5mg /m2,T=90.4% (b) 38.5mg /m2,T=88.9% (c) 50mg /m2,T=84.6% (d)153mg /m2,T=70.8%………………...………………………………………………44 圖3-10(a) 銅線導電玻璃於可見光波段(400~700nm)的穿透部分佈以及位在波長550nm的穿透度值(b) 銅線導電玻璃和市售FTO導電玻璃於可見光和紅外光波段(400nm~2500nm)之穿透度分佈(c)銅線導電電極擴散穿透度和鏡面穿透度(d)銅線導電電極擴散穿透度和鏡面穿透度差值(e)銅線導電電極和其他材料之透明導電電極擴散穿透度與鏡面穿透度差值比較…………………………………………………..47 圖3-11(a)銅線導電玻璃電流電壓圖(I-V Curve) (b)銅線導電玻璃於大氣下經過37天片電阻之變化(c)銅線導電玻璃直流導電率對光學導電率(σDC/σOp)之比值(d)銅奈米線和其他材料(銀奈米線、Graphene、奈米碳管、水相銅奈米線和ITO)之穿透度片電阻比較…………….…..51 圖3-12電流經電池流出後經銅線導電電極形成通路,使得LED燈泡發亮..........................................................................................................52

    1 Hu, L. B., Kim, H. S., Lee, J. Y., Peumans, P. & Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 4, 2955-2963, (2010).
    2 Rowell, M. W. et al. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 88, (2006).
    3 Yin, Z. Y. et al. Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano 4, (2010).
    4 Kang, M. G., Xu, T., Park, H. J., Luo, X. G. & Guo, L. J. Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes. Adv Mater 22, 4378-+, (2010).
    5 Wu, H. et al. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode. Nano Lett. 10, 4242-4248, (2010).
    6 Hecht, D. S., Hu, L. B. & Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv Mater 23, 1482-1513, (2011).
    7 Tahar, R. B. H., Ban, T., Ohya, Y. & Takahashi, Y. Tin doped indium oxide thin films: Electrical properties. J. Appl. Phys. 83, 2631-2645 (1998).
    8 Iijima, S. HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature 354, 56-58, (1991).
    9 Durkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35-39, (2004).
    10 Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941-2944, (2000).
    11 Javey, A. et al. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 1, 241-246, (2002).
    12 Kaempgen, M., Duesberg, G. S. & Roth, S. Transparent carbon nanotube coatings. Appl. Surf. Sci. 252, 425-429, (2005).
    13 Dressel, M. & Gruner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter. (2002).
    14 De, S. et al. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. ACS Nano 3, 1767-1774, (2009).
    15 Geng, H. Z. et al. Absorption spectroscopy of surfactant-dispersed carbon nanotube film: Modulation of electronic structures. Chem. Phys. Lett. 455, 275-278, (2008).
    16 Hecht, D. S. et al. High conductivity transparent carbon nanotube films deposited from superacid (vol 22, 075201, 2011). Nanotechnology 22, (2011).
    17 Pereira, L. F. C., Rocha, C. G., Latge, A., Coleman, J. N. & Ferreira, M. S. Upper bound for the conductivity of nanotube networks. Appl. Phys. Lett. 95, (2009).
    18 Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669, (2004).
    19 Orlita, M. et al. Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene. Phys. Rev. Lett. 101, (2008).
    20 Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907, (2008).
    21 Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388, (2008).
    22 Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308-1308, (2008).
    23 Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3, 270-274, (2008).
    24 Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5, 574-578, (2010).
    25 De, S. & Coleman, J. N. Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? ACS Nano 4, 2713-2720, (2010).
    26 Zheng, Q. B. et al. Transparent Conductive Films Consisting of Ultra large Graphene Sheets Produced by Langmuir-Blodgett Assembly. ACS Nano 5, 6039-6051, (2011).
    27 Ke, Y. Q. et al. Resistivity of thin Cu films with surface roughness. Phys Rev B 79, (2009).
    28 Ghosh, D. S., Martinez, L., Giurgola, S., Vergani, P. & Pruneri, V. Widely transparent electrodes based on ultrathin metals. Opt Lett 34, 325-327 (2009).
    29 Kang, M. G. & Guo, L. J. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv Mater 19, 1391-+, (2007).
    30 Kang, M. G., Park, H. J., Ahn, S. H. & Guo, L. J. Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells. Sol Energ Mat Sol C 94, 1179-1184, (2010).
    31 Ghosh, D. S., Chen, T. L. & Pruneri, V. High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96,
    32 Scardaci, V., Coull, R., Lyons, P. E., Rickard, D. & Coleman, J. N. Spray Deposition of Highly Transparent, Low-Resistance Networks of Silver Nanowires over Large Areas. Small 7, 2621-2628, (2011).
    33 Lee, P. et al. Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network. Adv Mater,(2012).
    34 Rathmell, A. R., Bergin, S. M., Hua, Y. L., Li, Z. Y. & Wiley, B. J. The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films. Adv Mater 22, 3558-+, (2010).
    35 Rathmell, A. R. & Wiley, B. J. The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates. Adv Mater 23, 4798-+, (2011).
    36 Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices (vol 9, pg 205, 2010). Nat. Mater. 9, 865-865, (2010).
    37 Lee, J. Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689-692, (2008).
    38 Pike, G. E. & Seager, C. H. Percolation and conductivity: A computer study. II. Phys. Rev. B: Solid State 10, 1421 (1974).
    39 Bergin, S. M. et al. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996-2004, (2012).
    40 Hu, L., Wu, H. & Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. Mrs Bull 36 (2011).
    41 Ye, E. Y., Zhang, S. Y., Liu, S. H. & Han, M. Y. Disproportionation for Growing Copper Nanowires and their Controlled Self-Assembly Facilitated by Ligand Exchange. Chem-Eur J 17, 3074-3077, (2011).
    42 Tang, X. & Tsuji, M. Syntheses of Silver Nanowires in Liquid Phase. 402 (2010).
    43 Lee, Y. I. et al. Tunable Synthesis of Cuprous and Cupric Oxide Nanotubes from Electrodeposited Copper Nanowires. J. Nanosci. Nanotechnol. 11, 1455-1458, (2011.
    44 Gu, W. H., Kim, K. K. & Ieee. A new approach to accurate resistivity measurement for a single nanowire - Theory and application. (Ieee, 2006).
    45 Zhong, S. et al. Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition. Small 5, 2265-2270, (2009).
    46 Chen, K. C., Wu, W. W., Liao, C. N., Chen, L. J. & Tu, K. N. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066-1069, (2008).
    47 Li, C. & Huang, D. Handbook of Metal Materials. (2004).
    48 Xu, L. et al. Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins. Appl. Phys. Lett. 90, (2007).
    49 King, P. J., Khan, U., Lotya, M., De, S. & Coleman, J. N. Improvement of Transparent Conducting Nanotube Films by Addition of Small Quantities of Graphene. ACS Nano 4, 4238-4246, (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE