簡易檢索 / 詳目顯示

研究生: 蔡瀚陞
Han-Sheng Tsai
論文名稱: 整合介電泳與微流體聚焦效應之細胞分離晶片
Cell Separation Biochip via Dielectrophoresis and Microfluidic Focusing
指導教授: 劉承賢
Cheng-Hsien Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 54
中文關鍵詞: 介電泳分離微流體
外文關鍵詞: Dielectrophoresis, Separation, Microfluid
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,許多關於微小化的製程技術都已經發展成熟,因此利用微機電技術來對生物分子做操控或分析的研究也逐漸普遍化,也成為生物科技上一項重要領域,主要目的是將所需的功能或是裝置整合至一個實驗室晶片,而且該晶片具有完整的生物檢測或是分析的能力。就以分離細胞的微小化裝置為例,目前已被提出的許多技術如微鑷夾等,都具有一些缺點,因此希望能夠發展出一個既簡單又能有效率地分離細胞晶片。

    在這論文中,利用微流體的特性,設計出微流道並配合介電泳的特性以達到具有細胞分離功能的生醫晶片。利用兩道不同流量之微流體匯集,並且使細胞被局限於微流道的壁緣,同時細胞會因為尺寸的差異與阻力的因素產生初步的分離。再藉著施加特定範圍頻率的電壓於所設計的微電極上,對細胞產生負介電泳力,以達到有效的細胞分離與收集的效果。其中先以模擬軟體CFDRC分析與驗證設計概念後,再將整體設計以微機電製程技術完成。實驗過程中以聚苯乙烯之微粒子代替細胞來驗證此生醫晶片的可行性。


    Recently, researches about manipulation and analysis of bio-particles by MEMS technology are growing because of the fabrication development, and it is an important field ob bio-technology. The main purpose is to integrate the functions we need into a Lab-On-a-Chip system, and the chips have the function of bio-detection and analysis. Taking the micro-device of cell sorting for example, there are many technology have been presented, such as microgripper. But each of them has some restrications. Therefore, we want to design a bio-chip which could separate cells easily and efficiently.

    In this thesis, we use the characteristic of microfluid and design the bio-chip to combine with DEP (dielectrophoresis) and microchannel to sort cells. By collecting the two fluids with different flow rates, all cells will close the wall in the microchannel. At the same time, the cells will separate preliminary because of the sizes of the cells and the drag force. By applying input AC voltage within specific frequency range on the micro electrodes, cells could be separate and collect with negative DEP force. We through numerical simulation software, CFDRC, and the design concepts are realized by MEME fabrication process. At last, we use polystyrene beads in place of cells to demonstrate the functions of our chip.

    摘要 i Abstract ii Contents iii List of Figures v List of Tables ix 1. Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 3 1.2.1 Manipulation 3 (a) Optical tweezers 3 (b) Dielectrophoresis 4 1.2.2 Separation 5 (a) Optical tweezers separation 5 (b) Hydraulic separation 6 (c) Dielectrophoresis separation 9 (d) The others 14 2. Device Development 17 2.1 Theory Description 17 2.1.1 The Reynolds Number of Microflows 17 2.1.2 Theory of Dielectrophoresis 18 2.2 Design concept 20 2.3 Theoretical Analyses and Numerical Simulation 22 2.3.2 Flow rate decreasing 28 2.3.3 Negative DEP force sorting 30 3. Fabrication process 33 3.1 Process Flow 33 3.2 Fabrication Results 35 4. Experimental demonstration and results 37 4.1 Experimental Setup 37 4.2 Experimental Results 38 4.2.1 Microfluidic focusing 38 4.2.2 Negative DEP sorting 40 5. Conclusion and Future Work 51 5.1 Conclusion 51 5.2 Discussion 52 References 53

    [1]Ashkin, “History of Optical Trapping and Manipulation of Small-Neutral Particle, Atoms, and Molecules,” IEEE Journal on selected topics in quantum electronics, Vol.6, 2000.
    [2]T. Muller, G. Gradl, S. Howitz, S. Shirley, Th. Schnelle, G. Fuhr, “A 3-D microelectrode system for handling and caging single cells and particles,” Biosensors & Bioelectronics, 14, pp.247–256, 1998.
    [3]M. Ozkan, M. Wang, C. Ozkan, R. Flynn, A. Birkbeck and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomedical Microdevice, Vol. 5, pp. 61-67, 2003
    [4]C. C. Chen, and S. Zappe, “Microfluidic Switch for Embryo and Cell Sorting,” Transducers, 65, pp.659-662, 2003.
    [5]Masumi Yamada and Minoru Seki, “Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics,” Lab Chip, 5, pp.1233–1239, 2005.
    [6]Masumi Yamada and Minoru Seki, “Microfluidic Particle Sorter Employing Flow Splitting and Recombining,” Analytical Chemistry, Vol. 78, No. 4, pp.1357-1362, February 15, 2006.
    [7]J. Takagi, M. Yamada, M. Yasuda, and M. Seki, "Continuous particle separation in a microchannel having asymmetrically arranged multiple branches," Lab Chip, Vol. 5, pp.778-784, 2005.
    [8]Davis Holmes, Nicolas G. Green, and Hywel Morgan, "Microdevices for Dielectrophoretic Flow-Through Cell Separation," IEEE Engineering in Medicine and Biology Magazine , pp.85-90,2003.
    [9]Sungyoung Choi and Je-Kyun Park, "Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array," Lab Chip, vol. 5, pp. 1661-1167, 2005.
    [10]Jason G. Kralj, Michael T. W. Lis, Martin A. Schmidt, and Klavs F. Jensen, "Continuous Dielectrophoretic Size-Based Particle Sorting," Analytical Chemistry, Vol.78, No.14, pp.5019-5025, 2006.
    [11]Ting-chen Shih, Kuang-han Chu and Cheng-Hsien Liu, “A programmable biochip for the applications of trapping and adaptive multi-sorting using dielectrophoresis array,” Journal of MicroElectroMechanical Systems 16 (4), pp. 816-825, 2007.
    [12]Doneun Huh, H.-H. Wei, O. Kripfgans, B. Fowlkes, J.B. Grotberg, and S. Takayama, “Gravity-Driven-Microhydrodynamics-Based Cell Sorter (microHYCS) for Rapid, Inexpensive, and Efficient Cell Separation and Size-Profiling,” IEEE MEMS, 180, pp.466-469, 2002.
    [13]Dongeun Huh, Joong Hwan Bahng, Yibo Ling, Hsien-Hung Wei, Oliver D. Kripfgans, J. Brian Fowlkes, and James B. Grotberg, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Analytical Chemistry, Vol.79, No.4, pp1369-1376, 2007.
    [14]Sungyoung Choi and Je-Kyun Park, “Hydrophoresis: A new-phoretic method for-resolution particle separation,” Transducers, pp.1769-1772, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE