簡易檢索 / 詳目顯示

研究生: 顏廷翰
Yen, Ting-Han
論文名稱: 對稱薄膜堆疊結構於平坦化CMOS-MEMS加速度計之設計與實現
Design and Implementation of a CMOS-MEMS Accelerometer Using Symmetric Layer Stacking Structure
指導教授: 方維倫
Fang, Weileun
口試委員: 盧向成
Lu, Shiang-Cheng
方維倫
Fang, Weileun
莊英宗
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: CMOS-MEMS加速度計對稱結構殘餘應力
外文關鍵詞: CMOS-MEMES, accelerometer, symmetric layers stacking, residual stress
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用TSMC 0.35μm Mixed Signal 2P4M Polycide製程,結合乾、濕蝕刻的後製程,設計與製造CMOS-MEMS加速度計。本論文特色為透過提出之後製程製造出對稱薄膜堆疊結構的CMOS-MEMS加速度計(四層金屬與三層介電材料),且透過結構上金屬引洞材料的設計,使後製程能夠順利進行以完成結構懸浮;此外在結構固定端亦提出電性絕緣的結構設計以解決此後製程遭遇的電性繞線問題。本研究利用對稱結構來提升元件的總體性能,例如提高靈敏度與熱穩定性,及改善現有CMOS-MEMS元件因殘餘應力產生的結構翹曲問題。


    This study utilizes TSMC 0.35um Mixed Signal 2P4M Polycide process, combined with proposed post-process to design and fabricate a CMOS-MEMS accelerometer. The merit of this study is that through post-CMOS process with wet, and dry etching to design and fabricate a symmetric layers stacking CMOS-MEMS accelerometer (with 4 metal layers and 3 dielectric layers) by metal via design on structures; Moreover, for the purpose of electrical routing using this post-CMOS process, a structure design at anchors for electrical isolation is proposed. The results show that overall device performances can be enhanced, ex. higher device sensitivity, thermal stability and reduced existent residual stresses in CMOS-MEMS.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 文獻回顧 4 1-3-1 CMOS-MEMS製程 4 1-3-2 加速度感測機制 6 1-3-3 殘餘應力補償方式 8 1-4 研究目標 10 第二章 CMOS-MEMS對稱結構設計與實現 23 2-1 CMOS-MEMS對稱薄膜堆疊結構 23 2-1-1 熱應力模擬 24 2-1-2 多層膜理論 24 2-2 乾、濕蝕刻製程整合 30 2-3 電性絕緣結構設計 31 第三章 對稱結構CMOS-MEMS加速度計 42 3-1 加速度計感測架構 42 3-2 機械感測結構 42 3-2-1 質量塊 44 3-2-2 彈簧 45 3-2-3 感測臂 47 第四章 製程與結果 56 4-1 TSMC 0.35um 2P4M CMOS製程 56 4-1-1 定義CMOS-MEMS元件 57 4-1-2 CMOS-MEMS後製程 58 4-2 製程結果與討論 59 第五章 元件量測 68 5-1 結構表面形貌量測 68 5-2 加速度訊號量測 69 第六章 結論 81 參考文獻 89

    [1] http://www.nintendo.tw/
    [2] http://www.apple.com/iphone/
    [3] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, 86, pp.1552-1574, 1998
    [4] R. T. Howe, “Surface micromachining for microsensors and microactuators,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 6, pp.1809-1813, 1988.
    [5] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low g application,” Sensors and Actuator A, 54, pp.472-476, 1966.
    [6] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of the IEEE, 86, pp.1536-1551, 1998.
    [7] C. Burrer, J. Esteve, and E. Lora-Tamayo, “Resonant silicon accelerometers in bulk micromachining technology and approach,” J. Microelectromech. Syst., 5, pp.122-130, 1996.
    [8] N. Yazdi, and K. Najafi, “An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process,” J. Microelectromech. Syst., 9, pp.544-550, 2000.
    [9] F. Rudolf, A. Jornod, J. Bergqvist, and H. Leuthold, “Precision accelerometers with μg resolution,” Sensors and Actuators A, 21, PP.297-302, 1990.
    [10] M. Koyanagi, T. Fukushima, and T. Tanaka, “High-density through silicon vias for 3-D LSIs,” Proceedings of the IEEE, 97, pp.49-59, 2009.
    [11] K. Sakuma, P. S. Andry, C. K. Tsang, S. L. Wright, B. Dang, C. S. Patel, B. C. Webb, J. Maria, E. J. Sprogis, S. K. Kang , R. J. Polastre, R. R. Horton, and J. U. Knickerbocker, “3D chip-stacking technology with through-silicon vias and low-volue lead-free interconnections,” IBM Journal of Research, 52, pp.611-622, 2008.
    [12] S. Spiesshoefer, Z. Rahman, G. Vangara, S. Polamreddy, S. Burkett, and L. Schaper, “Process integration for through-silicon vias,” Journal of Vacuum Science & Technology A, 23, 2005.
    [13] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Haleitner, “CMOS-present and future,” IEEE International Conference on Micro Electro Mechanical System, Las Vegas, NV., Jan., 2002, pp. 459-466.
    [14] http://www.st.com
    [15] http://www.bosch-sensortec.com
    [16] http://www.analog.com
    [17] J. A. Thorton, and D. W. Hoffman, “Stress related effects in thin films,” Thin Solid Films, 171, pp.5, 1989.
    [18] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. Korvink, and O. Tabata, CMOS MEMS: Advanced Micro and Nanosystems. Vol. 2, Weinheim, Germany, John Wiley & Sons Inc, 2005.
    [19] http://www.akustica.com
    [20] G. K. Fedder, “CMOS-based sensors,” IEEE Sensors Conference, Irvine, CA, Oct., 2005, pp. 125-128.
    [21] http://www.cic.org.tw
    [22] H. Seidel, U. Fritsch, R. Gottinger, and J. Schalk, “A piezoresistive silicon accelerometer with monolithically integrated CMOS circuitry,” International Conference on Solid-state Sensors and Actuators and Eurosensors IX., Stockholm, Sweden, June, 1995.
    [23] A. Partridge, A. E. Rice, T. W. Kenny, “New thin film epitaxial polysilicon encapsulation for piezoresistive accelerometers,” MEMS 01’, Interlaken, Switzerland, Jan., 2001.
    [24] Y. Nemirovsky, A. Nemirovsky, P. Muralt, and N. Setter, “Design of novel thin-film piezoelectric accelerometer,” Sensors and Actuators A: Physical, 56, pp. 239-249, 1996.
    [25] R. de Reus, J. O. Gullov, and P. R. Scheeper, “Fabrication and characterization of a piezoelectric accelerometer,” J. Micromech. Microeng., 9, pp.123-126, 1999.
    [26] F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy, and A. Boyer, “Design of a micromachined thermal accelerometer: thermal simulation and experimental results,” Microelectronics Journal, 34, pp.275-280, 2003.
    [27] A. M. Hung, J. Jones, E. Czyzewska, J. Chen, and B. Woods, “Micromachined accelerometer based on convection heat transfer,” MEMS 98’, Heidelberg, Germany, Jan., 1998.
    [28] H. Xie, and G. K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” MEMS ’00, Miyazaki, Japan, Jan., 2000.
    [29] H. Xie, G. K. Fedder, Z. Pan, and W. Frey, “Design and fabrication of an integrated CMOS-MEMS 3-axis accelerometer,” Nanotech, 2, pp.420-423, 2003.
    [30] H. Luo, G. Zhang, L. R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer,” J. Microelectromech. Syst., vol.11, pp.188-195, 2002.
    [31] H. Lakdawala, and G. K. Fedder, “Temperature stabilization of CMOS capacitive accelerometers, ” J. Micromech. Microeng. 14, pp.559-566, 2004.
    [32] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, “Post-CMOS processing for high-aspect-ratio integrated silicon microstructures,” J. Microelectromech. Syst., vol.11, No.2, 2002.
    [33] S. S. Tan, C. Y. Liu, L. K. Yeh, Y. H. Chiu, and Klaus Y. J. Hsu, “A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability, ” J. Micromech. Microeng. 21, 2011.
    [34] J. S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, “Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21, pp.2482-2486, 2003.
    [35] Y. J. Huang, T. L. Chang, and H. P. Chou, “Study of symmetric microstructures for CMOS multilayer residual stress,” Sensors and Actuators A: Physical, vol. 150, pp.237-242, 2009.
    [36] S. Timoshenko, “Analysis of bi-metal thermostats,” J. Optical Society of America, 11, pp.233-255, 1925.
    [37] H. Lakdawala, and G. K. Fedder, “Analysis of temperature dependent residual stress gradients in CMOS micromachined structures,” Transducers 99’, Sendai, June, 1999.
    [38] C. Wang, M. H. Tsai, C. M. Sun, and W. Fang, “A novel CMOS out-of-plane accelerometer with fully differential gap-closing capacitance sensing electrodes,” J. Micromech. Microeng., 17, pp.1275-1280, 2007.
    [39] M. H. Tsai, C. M. Sun, Y. C. Liu, C. Wang, and W. Fang, “Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” J. Micromech. Microeng., 19, 2009.
    [40] B. V. Amini, and F. Ayazi, “A 2.5-v 14-bit ΣΔ CMOS SOI capacitive accelerometer,” IEEE J. Solid-State Circuits, 38, pp.2467-2476, 2004.
    [41] C. Lu, M. Lemkin, and B. E. Boser, “A monolithic surface micromachined accelerometer with digital output,” ISSCC, San Francisco, CA, USA, Feb., 1995, pp.160-161.
    [42] B. E. Boser, and R. T. Howe, “Surface micromachined accelerometers,” IEEE J. Solid-State Circuits, 31, pp.366-375, 1996.
    [43] N. Yazdi, H Kulah, and K. Najafi, “Precision readout circuits for capacitive microaccelerometers,” Proc. IEEE Conf. Sensors, Vienna, Austria, Oct., 2004, pp.28-31.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE