簡易檢索 / 詳目顯示

研究生: 蔡亞晴
Tsai, Ya-Ching
論文名稱: 果蠅atg5-RNAi過度表達是否影響克隆細胞產生?
Can atg5-RNAi overexpression affect clonal induction in drosophila?
指導教授: 徐瑞洲
Hsu, Jui-Chou
口試委員: 桑自剛
Sang, Tzu-Kang
張慧雲
Chang, Hui-Yun
陳惠民
Chen, Hui-Min
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 48
中文關鍵詞: 克隆果蠅發育重組酶翻轉酶跳耀子熱休克翅膀假想盤
外文關鍵詞: clone, drosophila, development, recombinase, Flippase, P-element, heat-shock, wing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Flip-out Gal4 system是一種遺傳工具,常用於過度表達感興趣的基因,以及用來追蹤細胞譜系。當幼蟲熱休克處理後,Flippase重組酶(Flp)被表達,誘導兩個FRT中間的標識基因和終止密碼子切除,下游的Gal4會持續地被表達,再活化下游的UAS-GFP(報導基因)及感興趣的基因過度表達。我們主要研究的對象是果蠅翅膀的假想盤,在假想盤中細胞分裂後會製造出flip-out clones。
    在過去,我們實驗室發現過表達atg5-RNAi會產生大量的clone。我們所使用的atg5-RNAi果蠅基因型是yw,UAS-atg5-RNAi(簡稱atg5-RNAi)。在這篇論文我探討了過表達atg5-RNAi時ectopic clone形成的機制。首先,我發現將atg5-RNAi跳耀子移除,此時不會產生很多ectopic clone,因此增加clone頻率的原因,是因為在 X 染色體上插入了atg5-RNAi跳耀子。然而相較於atg5突變,atg5-RNAi下產生ectopic clone的頻率很高,而在atg5突變下mitotic clone產生的頻率較低,這個結果說明了atg5在ectopic clone形成中所扮演的角色,與我發現的一致,過表達atg5-RNAi不是clone產生頻率上升所必需的。 此外, atg5-RNAi insertion-mediated system促進clone產生,是需要熱休克的,但不需要Flp。總而言之,我們的數據表明在yw, UAS-atg5-RNAi果蠅中,存在類似Flp的活性。
    有趣的是,我觀察到這種類似Flp的活性和hsflp很像,可以產生mitotic clone; 但與hsflp不同的是,它不能在唾液腺的多線染色體中產生ectopic clone。接著我使用meiotic mapping,將這種類似Flp的活性在X 染色體上定位,最終定位出這種類似Flp的活性在forked基因(X 染色體的15)之後的區域。最後,我發現在yw,UAS-atg5-RNAi果蠅,在18E中插入了一個heat-shock flippase 12的跳耀子(hsflp12),clone生成的高頻率是因為hsflp12造成的。得出結論,我們使用的yw,UAS-atg5-RNAi果蠅基因型其實是yw,hsflp12,UAS-atg5-RNAi。


    The flip-out Gal4 system is a genetic tool commonly used for gene overexpression and lineage tracing. After heat-shock treatment of larvae, Flippase (Flp) recombinase is expressed to induce the excision of marker gene flanked by FRTs , which causes the constitutive expression of Gal4 to activate UAS-GFP reporter or other gene of interest in the flip-out clones after cell division in the wing disc.
    Our lab previously found that overexpression of atg5-RNAi generated a large number of clones. The atg5-RNAi stock we used is yw, UAS-atg5-RNAi (referred to as atg5-RNAi). Here, I explored the mechanism of ectopic clone formation when atg5-RNAi is overexpressed. First, I found that atg5-RNAi P-element revertant cannot generate many ectopic clones. Therefore, the increase in the frequency of clone induction is due to the insertion of the atg5-RNAi P-element on the X chromosome. However, the frequency to generate atg5 mutant mitotic clones is low when compared to the high frequency of atg5-RNAi ectopic clones. This data argued the role of atg5 in ectopic clone formation. Consistent with this, I found that atg5-RNAi overexpression is not required to promote clonal induction. Moreover, this atg5-RNAi insertion-mediated system required heat-shock but not Flp to promote clonal induction. Together, our data suggests the presence of Flp-like activity in yw,UAS-atg5-RNAi stock.
    Interestingly, I observed that this Flp-like activity, similar to hsflp, can generate mitotic clones but, unlike hsflp, it cannot generate ectopic clones in the polytene chromosomes of salivary gland. Next, I mapped this Flp-like activity on X chromosome using meiotic mapping. This Flp-like activity was mapped to a region distal to forked gene (15 of X chromosome). Finally, I found that there is a heat-shock flippase12 P-element (hsflp12) inserted in 18E of yw,UAS-atg5-RNAi stock and hsflp12 is responsible for the high frequency of clone induction. I conclude that the yw,UAS-atg5-RNAi stock we used was indeed yw,hsflp12,UAS-atg5-RNAi.

    Abstract--------------------I 中文摘要---------------------III 致謝-------------------------V Introduction----------------1 Materials and Methods-------4 Result----------------------8 Discussion------------------18 Reference-------------------20 Figures---------------------24

    Struhl, G., & Basler, K. (1993). Organizing activity of wingless protein in Drosophila. Cell, 72(4), 527-540.

    Theodosiou, N. A., & Xu, T. (1998). Use of Flp/FRT system to study drosophila development. Methods, 14(4), 355-365.

    Scott, R. C., Schuldiner, O., & Neufeld, T. P. (2004). Role and regulation of starvation-induced autophagy in the Drosophila fat body. Developmental cell, 7(2), 167-178.

    Germani, F., Bergantinos, C., & Johnston, L. A. (2018). Mosaic analysis in Drosophila. Genetics, 208(2), 473-490.

    Bosch, J. A., Tran, N. H., & Hariharan, I. K. (2015). CoinFLP: a system for efficient mosaic screening and for visualizing clonal boundaries in Drosophila. Development, 142(3), 597-606.

    Menéndez, J., Pérez-Garijo, A., Calleja, M., & Morata, G. (2010). A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proceedings of the National Academy of Sciences, 107(33), 14651-14656.

    Golic, K. G., & Lindquist, S. (1989). The Flp recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell, 59(3), 499-509.

    Chou, T. B., & Perrimon, N. (1992). Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics, 131(3), 643-653.

    Tsai Jun-Ting. (2019). Overexpression of Atg5-RNAi Influence development of drosophila wing disc.

    Wu Nien-Chen. (2020) Effect of Cactus and Atg5-RNAi overexpression on Drosophila development.

    Zhang, S., Wang, J., Du, Y., Shang, J., Wang, L., Wang, J., ... & Liu, H. (2013). Cell Autophagy and Myocardial Ischemia/Reperfusion Injury. InTech.

    Cai, W., Jin, Y., Girton, J., Johansen, J., & Johansen, K. M. (2010). Preparation of Drosophila polytene chromosome squashes for antibody labeling. Journal of visualized experiments: JoVE, (36).

    Yamada, Y., Maeda, M., Alshahni, M. M., Monod, M., Staib, P., & Yamada, T. (2014). Flippase (FLP) recombinase-mediated marker recycling in the dermatophyte Arthroderma vanbreuseghemii. Microbiology, 160(10), 2122-2135.

    Lee, J. E. A., Cranna, N. J., Chahal, A. S., & Quinn, L. M. (2012). Genetic systems to investigate regulation of oncogenes and tumour suppressor genes in Drosophila. Cells, 1(4), 1182-1196.

    Maruzs, T., Simon-Vecsei, Z., Kiss, V., Csizmadia, T., & Juhász, G. (2019). On the fly: recent progress on autophagy and aging in Drosophila. Frontiers in cell and developmental biology, 7, 140.

    Moreno, E., & Basler, K. (2004). dMyc transforms cells into super-competitors. Cell, 117(1), 117-129.

    Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. development, 118(2), 401-415.

    Schweizer, H. P. (2003). Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics. Journal of molecular microbiology and biotechnology, 5(2), 67-77.

    Tang, C. Y., & Sun, Y. H. (2002). Use of mini‐white as a reporter gene to screen for GAL4 insertions with spatially restricted expression pattern in the developing eye in drosophila. Genesis, 34(1‐2), 39-45.

    Wu, J. T., Lin, W. H., Chen, W. Y., Huang, Y. C., Tang, C. Y., Ho, M. S., ... & Chien, C. T. (2011). CSN-mediated deneddylation differentially modulates Ci 155 proteolysis to promote Hedgehog signalling responses. Nature communications, 2(1), 1-9.

    Kuhn, T. M., Little, S. C., & Capelson, M. (2020). Preparation of Drosophila Polytene Chromosomes, Followed by Immunofluorescence Analysis of Chromatin Structure by Multi-fluorescence Correlations. Bio-protocol, 10(13), e3673-e3673.
    Codogno, P., & Meijer, A. J. (2006). Atg5: more than an autophagy factor. Nature cell biology, 8(10), 1045-1047.

    Zhai, R. G., Hiesinger, P. R., Koh, T. W., Verstreken, P., Schulze, K. L., Cao, Y., ... & Bellen, H. J. (2003). Mapping Drosophila mutations with molecularly defined P element insertions. Proceedings of the National Academy of Sciences, 100(19), 10860-10865.

    Roote, J., & Prokop, A. (2013). How to design a genetic mating scheme: a basic training package for Drosophila genetics. G3: Genes| Genomes| Genetics, 3(2), 353-358.

    Bergmann, A., Agapite, J., McCall, K., & Steller, H. (1998). The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell, 95(3), 331-341.

    Verghese, S., Waghmare, I., Kwon, H., Hanes, K., & Kango-Singh, M. (2012). Scribble acts in the Drosophila fat-hippo pathway to regulate warts activity. PloS one, 7(11), e47173.

    Humbert, P. O., Russell, S. M., Smith, L., & Richardson, H. E. (2015). The Scribble–Dlg–Lgl module in cell polarity regulation. In Cell Polarity 1 (pp. 65-111). Springer, Cham.

    Brumby, A. M., & Richardson, H. E. (2003). scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. The EMBO journal, 22(21), 5769-5779.

    QR CODE