簡易檢索 / 詳目顯示

研究生: 薛翔峻
論文名稱: 以甲烷/氨氣和乙炔/氨氣混合物研製n型非晶質 射頻電漿輔助化學汽相沉積碳薄膜
n-Type amorphous carbon films prepared by radio frequency plasma enhanced chemical vapor deposition using methane/ammonia and acetylene/ammonia mixtures
指導教授: 李三保
口試委員: 李三保
胡塵滌
楊聰仁
薛承輝
蔣東堯
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 121
中文關鍵詞: 電漿輔助化學汽相沉積法碳薄膜殘留應力
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以甲烷/氨氣和乙炔/氨氣混合物研製n型非晶質射頻電漿輔助化學汽相沉積碳薄膜。當氨氣/甲烷比從0增加到0.2時,氮/碳比從0增加到5.4%。氮碳鍵結、氮氫鍵結和sp2碳比例隨著氨氣/甲烷比增加而增加,但碳薄膜的沉積速率、有序程度、光學能隙、楊氏模數、硬度和殘留應力隨著氨氣/甲烷比增加而減少。非晶質碳薄膜/p型矽元件在氨氣/甲烷比為0.15時(氮/碳比為4.7%)具有最佳的電學特性。另一方面,當氨氣/乙炔比從0增加到1.4時,氮/碳比從0增加到6.9%。氮碳鍵結和sp2碳比例隨著氨氣/甲烷比增加而增加,但碳薄膜的有序程度、楊氏模數和硬度隨著氨氣/乙炔比增加而減少。非晶質碳薄膜/p型矽元件在氨氣/乙炔比為1時(氮/碳比為5.8%)有最佳的電學特性,其理想因子為1.59。
    另外,本論文也利用黏彈性力學探討在薄膜/基材系統中的殘留應力。首先,本論文推導出在多層薄膜/基材系統中,一個簡化的黏彈性應力封閉解。如果總薄膜剛性和基材剛性的比例小於0.02時,本研究的公式可以有效地顯示出多層薄膜/基材系統中殘留應力的鬆弛。基材和薄膜中的應力隨著薄膜和基材的熱膨脹係數差、溫度差、薄膜楊氏模數和薄膜黏性係數的增加而增加,但隨著時間的增加而減少。其次,本論文也推導出在雙層馬斯威爾材料系統中,其黏彈性應力的真實解。如果其中一層的厚度遠小於另外一層,在雙層系統中的黏彈性應力可以被簡化為薄膜/基材系統中的黏彈性應力。薄膜/基材系統的黏彈性應力解包含了薄膜厚度和位置。分析結果顯示平均薄膜應力隨著正規化時間的增加而減少,且到很長的時間後變成零。本真實解可用來評估其他近似解的準確性。


    This study investigates the effect of ammonia/methane (NH3/CH4) and ammonia/acetylene (NH3/C2H2) mixtures on characteristics of nitrogen-doped amorphous hydrogenated carbon (a-C:H(N)) films prepared by plasma enhanced chemical vapor deposition. As the NH3/CH4 ratio increases from 0 to 0.2, the nitrogen/carbon ratio increases from 0 to 5.4%. The nitrogen-carbon bonds, nitrogen-hydrogen bonds, and sp2 carbon fraction of carbon films enlarge with increasing the NH3/CH4 ratio, while the deposition rate, ordered degree, optical band gap, reduced Young’s modulus, hardness, and residual stress of carbon films decrease. The a-C:H(N)/p-Si device has an optimum electrical property at the NH3/CH4 ratio of 0.15 (or at the N/C ratio of 4.7%). On the other hand, as the NH3/C2H2 ratio increases from 0 to 1.4, the nitrogen/carbon ratio increases from 0 to 6.9%. The nitrogen-carbon bonds and sp2 carbon fraction of carbon films enlarge with increasing the NH3/C2H2 ratio, while the ordered degree, Young’s modulus, and hardness of carbon films decrease. Furthermore, the a-C:H(N)/p-Si device has an optimal electrical property at the NH3/C2H2 ratio of 1 (or at the N/C ratio of 5.8%), which has an ideality factor of 1.59.
    Additionally, this study also investigates the residual stresses in thin films/substrate systems using viscoelastic theory. First, a simplified closed-form solution for viscoelastic deformation of multilayers due to residual stresses is derived. If the ratio of the total axial rigidity of thin films to that of the substrate is smaller than 0.02, the formulas of this study are valid to evaluate the relaxation of residual stresses in multi-layered thin films/substrate systems. The magnitude of stresses in the substrate and fims increases with increasing the difference of the thin film and substrate thermal expansion coefficients, the temperature change, and Young’s modulus and viscous coefficient of thin films, but it decreases with increasing the time. Second, the exact solution of viscoelastic stresses in the bilayer system is derived if both layers are Maxwell materials. As the thickness of one layer is much smaller than that of the other layer, the viscoelastic stress in the bilayer system can be reduced to that of the thin film/substrate system. The relative film thickness and the position in the thin film/ substrate system are included in this solution. The analytic result shows that the average film stress decreases with increasing the normalized time and finally equals zero in a long time. This exact solution can be used to evaluate the accurary of other approximate solutions.

    致謝 …………………………………………………………………I 摘要 …………………………………………………………………II Abstract ……………………………………………………………IV 總目錄 ………………………………………………………………VII 圖目錄 ………………………………………………………………XI 表目錄 ………………………………………………………………XV 第一章:緒論 ……………………………………………………………1 1.1 碳材料的分類 ……………………………………………………1 1.2 非晶質碳的結構和鍵結模型 ……………………………………4 1.3 非晶質碳的能隙 …………………………………………………6 1.4 非晶質碳的分類 …………………………………………………9 1.5 非晶質碳薄膜的沉積 …………………………………………11 1.5.1 沉積方法 ……………………………………………………11 1.5.2 rf-PECVD的沉積過程 ………………………………………12 1.5.3 前驅氣體的種類………………………………………………15 1.6 薄膜中的殘留應力 ……………………………………………17 1.7 薄膜的黏彈性 …………………………………………………17 1.8 研究動機與目的 ………………………………………………19 1.9 論文概述 ………………………………………………………21 第二章:以甲烷/氨氣研製電漿輔助化學氣相沉積非晶質碳薄膜的 特性研究………………………………………………………22 2.1 前言 ……………………………………………………………22 2.2 實驗方法及步驟 ………………………………………………22 2.2.1 試片準備與前處理 …………………………………………22 2.2.2 非晶質碳薄膜的製備 ………………………………………22 2.2.3 電漿診斷 ……………………………………………………26 2.2.4 碳薄膜的特性量測 …………………………………………27 2.3 結果與討論 ……………………………………………………41 2.3.1 電漿診療 ……………………………………………………41 2.3.2 自身偏壓和沉積速率 ………………………………………43 2.3.3 微結構分析 …………………………………………………45 2.3.4 光學性質與機械性質 ………………………………………53 2.3.5 殘留應力 ……………………………………………………54 2.3.6 a-C:H(N)/p-Si元件的J-V 和C-V 特性 ……………………55 2.3.7 與之前文獻比較 ……………………………………………60 2.4 結論 ……………………………………………………………64 第三章:以乙炔/氨氣研製電漿輔助化學氣相沉積非晶質碳薄膜的 特性研究………………………………………………………66 3.1 前言 ……………………………………………………………66 3.2 實驗方法與步驟 ………………………………………………66 3.2.1 試片準備與前處理 …………………………………………66 3.2.2 製備非晶質碳薄膜 …………………………………………67 3.2.3 碳薄膜的特性量測 …………………………………………67 3.3 結果與討論 ……………………………………………………68 3.3.1 微結構分析 …………………………………………………68 3.3.2 機械性質 ……………………………………………………73 3.3.3 a-C:H(N)/p-Si元件的J–V特性 ……………………………74 3.3.4 不同前驅氣體之比較 ………………………………………76 3.4 結論 ……………………………………………………………77 第四章:在多層薄膜/基材系統中由於熱不匹配產生的黏彈性應力 鬆弛模型………………………………………………………79 4.1 前言 ……………………………………………………………79 4.2 分析 ……………………………………………………………80 4.3 結果與討論 ……………………………………………………87 4.4 結論 ……………………………………………………………90 第五章:在雙層馬斯威爾材料系統中由於熱和晶格不匹配所造成 的真實黏彈性應力模型 ……………………………………91 5.1 前言 ……………………………………………………………91 5.2 分析 ……………………………………………………………91 5.3 結果與討論 ……………………………………………………99 5.4 結論 …………………………………………………………107 第六章:總結與未來展望 ……………………………………………108 6.1 總結 ……………………………………………………………108 6.2 未來展望 ………………………………………………………109 參考文獻 ……………………………………………………………111 論文著作 ……………………………………………………………120  

    [1] J. Robertson, Materials Science and Engineering: R: Reports, 37, 129 (2002).
    [2] J. Mcmurry, Organic chemistry, 6th edition, Brooks Cole, CA (2004).
    [3] H. Zhu, J. Wei, K. Wang, D. Wu, Solar Energy Materials and Solar Cells, 93, 1461 (2009).
    [4] A. Deneuville, Comptes Rendus de l'Académie des Sciences - Series IV - Physics-Astrophysics, 1, 81 (2000).
    [5] E. Kohn, M. Adamschik, P. Schmid, A. Denisenko, A. Aleksov, W. Ebert, Journal of Physics D: Applied Physics, 34, R77 (2001).
    [6] R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, S. M. Woollard, Journal of Physics: Condensed Matter, 21, 364221 (2009).
    [7] R. J. King, Geology Today, 22, 71 (2006).
    [8] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature, 318, 162 (1985).
    [9] W. Kratschmer, L. D. Lamb, K. Fostiropoulous, D. R. Huffman, Nature, 347, 354 (1990).
    [10] R. C. Haddon, A. F. Hebard, M. J. Rosseinsky, D. W. Murphy, S. J. Duclos, K. B. Lyons, B. Miller, J. M. Rosamilia, R. M. Fleming, A. R. Kortan, S. H. Glarum, A. V. Makhija, A. J. Muller, R. H. Eick, S. M. Zahurak, R. Tycko, G. Dabbagh, F. A. Thiel, Nature, 350, 320 (1991).
    [11] E. T. Hoke, K. Vandewal, A. Bartelt, W. R. Mateker, J. D. Douglas, R. Noriega, K. R. Graham, J. M. J. Fréchet, A. Salleo, M. D. Mcgehee, Advanced Energy Materials, 3, 220 (2013).
    [12] Y. Kawazoe, T. kondow, K. Ohno, Clusters and Nanomaterials, Springer, Heidelberg, Germany (2002).
    [13] S. Iijima, Nature, 354, 56 (1991).
    [14] L. R. Radovic, Chemistry and Physics of Carbon, Marcel Dekker, New York (2003).
    [15] R. L. McCreey, Chemical Reviews, 108, 2646 (2008).
    [16] A. Meroci, Microchimica Acta, 152, 157 (2006).
    [17] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 306, 666 (2004).
    [18] A. K. Geim, K. S. Novoselov, Nature Materials, 6, 183 (2007).
    [19] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, Nature, 446, 60 (2007).
    [20] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nature Nanotechnology, 3, 206 (2008).
    [21] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science, 320, 1308 (2008).
    [22] A. K. Geim, Science, 324, 1530 (2009).
    [23] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature, 457, 706 (2009).
    [24] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature, 442, 282 (2006).
    [25] http://commons.wikimedia.org/wiki/File:Amorphous_Carbon.png
    [26] J. Robertson, Advances in Physics, 35, 317 (1986).
    [27] W. Jacob, W. Möller, Applied Physics Letters, 63, 1771 (1993).
    [28] J. Roberston, Philosophical Magazine, B76, 335 (1997).
    [29] C. W. Chen, J. Roberston, Journal of Non-Crystalline Solids, 227-230, 602 (1998).
    [30] R. H. Bube, Electrons in solids: an introductory survey, Academic press, New York (1981).
    [31] S. R. Elliott, Physics of amorphous materials, 2nd edition, Longman, London (1990).
    [32] A. N. Fadzilah, N. A. Tahir, M. Rusop, Advanced Material Research, 403, 646 (2011).
    [33] S. T. Shiue, J. L. He, L. Y. Pan, S. T. Huang, Thin Solid Films, 406, 210 (2002).
    [34] S. T. Shiue, H. H. Hsiao, T. Y. Shen, H. C. Lin, K. M. Lin, Thin Solid Films, 483, 140 (2005).
    [35] E. Tomasella, C. Meunier, S. Mikhailov, Surface and Coatings Technology, 141, 286 (2001).
    [36] N. K. Cuong, M. Tahara, N. Yamauchi, T. Sone, Surface and Coatings Technology, 174, 1024 (2003).

    [37] H. Yokomichi, A. Masuda, N. Kishimoto, Thin Solid Films, 395, 249 (2001).
    [38] Y. Liu, C. Liu, Y. Chen, Y. Tzeng, P. Tso, I. Lin, Diamond and Related Materials, 13, 671 (2004).
    [39] S. R. Jian, T. H. Fang, D. S. Chuu, Journal of Non-Crystalline Solids, 333, 291 (2004).
    [40] N. D. Baydoğan, Materials Science and Engineering B, 107, 70 (2004).
    [41] T. S. Chen, S. T. Shiue, Thin Solid Films, 520, 6765 (2012).
    [42] Z. Sun, C. H. Lin, Y. L. Lee, J. R. Shi, B. K. Tay, X. Shi, Journal of Applied Physics, 87, 8122 (2000).
    [43] G. Capote, R. Prioli, P. M. Jardim, A. R. Zanatta, L. G. Jacobsohn, F. L. Freire Jr, Journal of Non-Crystalline Solids, 338, 503 (2004).
    [44] L. Wojcik, A. Markowski, Vacuum, 78, 235 (2005).
    [45] A. von Keudell, T. schwarz-Selinger, W. Jacob, Journal of Applied Physics, 89, 2979 (2001).
    [46] A. von Keudell, T. Schwarz-Sellinger, W. Jacob, Journal of Vacuum Science and Technology A, 19, 101 (2001).
    [47] R. S. Chu, S. T. Shiue, Surface and Coatings Technology, 202, 5364 (2008).
    [48] Y. Hayashi, K. M. Krishna, H. Ebisu, T. Soga, M. Umeno, T. Jimbo, Diamond and Related Materials, 10, 1002 (2001).
    [49] L. Valentini, J. M. Kenny, G. Carlotti, M. Guerrieri, G. Signorelli, L. Lozzi, S. Santucci, Thin Solid Films, 389, 315 (2001).
    [50] F. L. Freire Jr., Japanese Journal of Applied Physics, 36, 4886 (1997).
    [51] R. Kleber, M. Weiler, A. Kruger, S. Sattel, G. Kunz, K. Jung, H. Ehrhardt, Diamond and Related Materials, 2, 246 (1993).
    [52] W. D. Nix, Metallurgical Transactions A, 20, 2217 (1989).
    [53] S. M. Hu, Journal of Applied Physics, 70, R53 (1991).
    [54] A. G. Evans, J. W. Hutchinson, Acta Metallurgica et Materialia, 43, 2507 (1995).
    [55] S. Timoshenko, Journal of the Optical Society of America, 11, 233 (1925).
    [56] C. H. Hsueh, A. G. Evans, Journal of the American Ceramic Society, 68, 241 (1985).
    [57] J. W. Mattews, A. E. Blakeslee, Journal of Crystal Growth, 27, 118 (1974).
    [58] L. B. Freund, W. D. Nix, Applied Physics Letters, 69, 173 (1996).
    [59] T. Y. Zhang, S. Lee, L. J. Guido, C. H. Hsueh, Journal of Applied Physics, 85, 7579 (1999).
    [60] C. A. Volkert, Journal of Applied Physics, 70, 3521 (1991).
    [61] C. A. Volkert, Journal of Applied Physics, 74, 7107 (1993).
    [62] C. H. Hsueh, A. G. Evans, Journal of Applied Physics, 54, 6672 (1983).
    [63] G. W. Scherer, T. Garino, Journal of the American Ceramic Society, 68, 216 (1985).
    [64] C. H. Hsueh, Acta Metallurgica, 19, 1213 (1985).
    [65] P. Z. Cai, D. J. Green, G. L. Messing, Journal of the American Ceramic Society, 80, 1940 (1997).
    [66] Q. Q. Chen, F. Z. Xuan, S. T. Tu, Thin Solid Films, 517, 2924 (2009).
    [67] P. H. Townsend, D. M. Barnett, T. A. Brunner, Journal of Applied Physics, 62, 4438 (1987).
    [68] C. H. Hsueh, Journal of the American Ceramic Society, 74, 1646 (1991).
    [69] A. Atkinson, British Ceramic Proceedings, 54, 1 (1995).
    [70] W. Flugge, Viscoelasticity, 2nd edition, Springer, Berlin (1975).
    [71] A. Y. Liu, M. L. Cohen, Physical Review B, 41, 10727 (1990).
    [72] M. Y. Chen, X. Lin, V. P. Dravid, Y. W. Chung, M. S. Wong, W. D. Sproul, Surface and Coatings Technology, 54/55, 360 (1992).
    [73] D. Li, S. Lopez, Y. W. Chung, M. S. Wong, W. D. Sproul, Journal of Vacuum Science and Technology A, 13, 1063 (1995).
    [74] J. H. Kaufman, S. Metin, D. D. Saperstein, Philosophical Magazine B, 39, 13053 (1989).
    [75] D. I. Jones, A. D. Stewart, Philosophical Magazine B, 46, 423 (1982).
    [76] O. Amir, R. Kalish, Journal of Applied. Physics, 70, 4958 (1991).
    [77] N. Konofaos, C. B. Thomas, Applied Physics Letters, 61, 2805 (1992).
    [78] B. Mitu, S. Vizireanu, C. Petcu, G. Dinescu, M. Dinescu, R. Birjega, V. S. Teodorescu, Surface and Coatings Technology, 180/181, 238 (2004).
    [79] J. Seth, R. Padiyath, S. V. Babu, Diamond and Related Materials, 3, 210 (1994).
    [80] M. Szwarc, Journal of Chemical Physics, 17, 505 (1949).
    [81] E. J. Cukauskas, W. L. Carter, S. B. Qadri, Journal of Applied Physics, 57, 2538 (1985).
    [82] D. F. Franceschini, F. L. Freire Jr., C. A. Achete, G. Mariotto, Diamond and Related Materials, 5, 471 (1996).
    [83] R. Prioli, S. I. Zanette, A. O. Caride, D. F. Franceschini, F. L. Freire Jr., Journal of Vacuum Science and Technology A, 14, 2351 (1996).
    [84] F. L. Freire Jr. D. P. Franceschini, Thin Solid Films, 293, 236 (1997).
    [85] V. S. Veerasamy, G. A. J. Amaratunga, J. S. Park, W. I. Milne, H. S. Mackenzie, D. R. Mckenzie, Applied Physics Letters, 64, 2297 (1994).
    [86] A. Grill, Cold plasma in materials fabrication: from fundamentals to applications, Wiley-IEEE Press, New York (1994).
    [87] G. E. Mullenberg, Handbook of X-ray photoelectron spectroscopy, Perkin Elmer Corporation, Minnesota, USA (1979).
    [88] J. Tauc, R. Grigorovic, A. Vancu, Physica Status Solidi, 15, 627 (1966).
    [89] A. Foulain, Journal of Physics D: Applied Physics, 36, 394 (2003).
    [90] A. C. Fischer-Cripps, Nanoindentation, Springer, New York, 2002.
    [91] M. F. Doerner, W. D. Nix, Journal of Materials Research, 4, 601 (1986).
    [92] W. C. Oliver, G. M. Pharr, Journal of Materials Research, 6, 1564 (1992).
    [93] G. G. Stoney, Proceedings of the Royal Society of London, Series A, 82, 172 (1909).
    [94] A. Granier, M. Vervloet, K. Aumaille, C. Vallee, Plasma Sources Science and Technology, 12, 89 (2003).
    [95] F. Arefi-Khonsari, J. Kurdi, M. Tatoulian, J. Amouroux, Surface and Coatings Technology, 142–144, 437 (2001).
    [96] D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, T. Sedivcova, The Journal of Physical Chemistry A, 110, 12113 (2006).
    [97] A. N. Goyette, J. E. Lawler, L. W. Anderson, D. M. Gruen, T. G. McCauley, D. Zhou, A. R. Krauss, Plasma Sources Science and Technology, 7, 149 (1998).
    [98] M. Benlahsen, M. Therasse, Carbon, 42, 2255 (2004).
    [99] S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini, G. Mariotto, Journal of Applied Physics, 81, 2626 (1997).
    [100] B. Dischler, Proceedings of the European Materials Research Society Symposia, 17, 189 (1987).
    [101] S. R. P. Silva, G. A. J. Amaratunga, C. P. Constantinou, Journal of Applied Physics, 72, 1149 (1992).
    [102] K. Yamamoto, F. Kokai, Y. Koga, S. Fujiwara, New Diamond and Frontier Carbon Technology, 9, 289 (1999).
    [103] Ishpal, O. S. Panwar, M. Kumar, S. Kumar, Materials Chemistry and Physics, 125, 558 (2011).
    [104] H. S. Zhang K. Komvopoulos, Journal of Applied Physics, 106, 093504 (2009).
    [105] M. Rusop, S. M. Mominuzzaman, T. Soga, T. Jimbo, M. Umeno, Journal of Physics: Condensed Matter, 17, 1929 (2005).
    [106] J. Sobol-Antosiak, W. S. Ptak, Materials Letters, 56, 842 (2002).
    [107] C. Thomsen, S. Reich, Physical Review Letters, 85, 5214 (2000).
    [108] Y. Kawashima, G. Katagiri, Physical Review B, 52, 10053 (1995).
    [109] A. C. Ferrari, J. Robertson, Physical Review B, 64, 075414 (2001).
    [110] G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, W. Moller, Physical Review B, 73, 125427 (2006).
    [111] A. C. Ferrari J. Robertson, Physical Review B, 61, 14095 (2000).
    [112] D. Papadimitriou, G. Roupakas, C. A. Dimitriadis, S. Longothetidis, Journal of Applied. Physics, 92, 870 (2002).
    [113] A. C. Ferrari, S. E. Rodil, J. Robertson, Physical Review B, 67, 155306 (2003).
    [114] A. Lagrini, S. Charvet, M. Benlahsen, H. Cachet, C. Deslouis, Diamond and Related Materials, 16, 1378 (2007).
    [115] J. Tauc, in J. Tauc (ed.), Amorphous and liquid semiconductors, Plenum Press, London (1974).
    [116] C. Oppedisano, A. Tagliaferro, Applied Physics Letters, 75, 3650 (1999).
    [117] M. Lejeune, O. Durand-Drouhin, S. Charvet, A. Grosman, C. Ortega, M. Benlahsen, Thin Solid Films, 444, 1 (2003).
    [118] J. C. Angus, Y. Wang, in R. E. Clausing, L. L. Horton, J. C. Angus, P. Koidl (eds.), Diamond and diamond-like films and coatings, ATO-ASI Series B: Physics, Plenum, New York, 266, 173 (1991).
    [119] D. F. Franceschini, C. A. Achete, F. L. Freire Jr., Applied Physics Letters, 60, 3229 (1992).
    [120] A. Grill, V. Patel, Diamond and Related Materials, 2, 1519 (1993).
    [121] S. N. Das, A. K. Pal, Semiconductor Science and Technology, 21, 1557 (2006).
    [122] D. P. Norton, M. Ivill, Y. Li, Y. W. Kwon, J. M. Erie, H. S. Kim, K. Ip, S. J. Pearton, Y. W. Heo, S. Kim, B. S. Kang, F. Ren, A. F. Hebard, J. Kelly, Thin Solid Films, 496, 160 (2006).
    [123] K. K. Nanda, S. N. Sahu, Applied Physics Letters, 79, 2743 (2001).
    [124] R. S. Chu, S. T. Shiue, Thin Solid Films, 517, 4879 (2009).
    [125] H. C. Lin, S. T. Shiue, T. Y. Shen, K. M. Lin, Journal of Engineering, National Chung Hsing University, Taichung, Taiwan, 17, 75 (2006).
    [126] C. Y. Lin, L. H. Lai, Y. X. Liu, S. T. Shiue, H. Y. Lin, Journal of the Electrochemical Society, 158, D445 (2011).
    [127] F. Tuinstra, J. L. Koenig, Journal of Chemical Physics, 53, 1126 (1970).
    [128] C. Godet, N. M. J. Conway, J. E. Bourée, K. Bouamra, A. Grosman, C. Ortega, Journal of Applied Physics, 91, 4154 (2002).
    [129] S. M. Sze, Physics of semiconductor devices, Wiley, New York, (1979).
    [130] I. Chen, S. Lee, Journal of Applied Physics, 53, 1045 (1982).
    [131] S. A. Maranowski, F. A. Kish, S. J. Caracci, N. Holonyak Jr., J. M. Dallesasse, D. P. Bour, D. W. Treat, Applied Physics Letters, 61, 1688 (1992).
    [132] C. H. Hsueh, S. Lee, Journal of Materials Research, 15, 2780 (2000).
    [133] S. T. Shiue, H.C. Lin, T.Y. Shen, H. Ouyang, Applied Physics Letters, 86, 251910 (2005).
    [134] E. P. EerNisse, Applied Physics Letters, 30, 290 (1977).
    [135] H. C. Liu, S. P. Muraka, Journal of Applied Physics, 72, 3458 (1992).
    [136] S. Isomae, M. Nanba, Y. Tamaki, M. Maki, Applied Physics Letters, 30, 564 (1997).
    [137] S. E. Rosenberg, P. Y. Wong, I. N. Miaoulis, Thin Solid Films, 269, 64 (1995).
    [138] C. H. Hsueh, S. Lee, Journal of Applied Physics, 91, 2760 (2002).
    [139] S. C. Ko, S. Lee, C. H. Hsueh, Journal of Applied Physics, 93, 7107 (2003).
    [140] X. C. Zhang, B. S. Xu, H. D. Wang, Y. X. Wu, Journal of Applied Physics, 101, 083530 (2007).
    [141] Q. Q. Chen, F. Z. Xuan, S. T. Tu, Journal of Applied Physics, 106, 033512 (2009).
    [142] W. J. Chang, T. H. Fang, C. M. Lin, Journal of Applied Physics, 97, 103521 (2005).
    [143] C. H. Hsueh, Journal of Applied Physics, 91, 9652 (2002).
    [144] C. H. Hsueh, S. Lee, T. J. Chuang, Journal of Applied Mechanics, 70, 151 (2003).
    [145] N. H. Zhang, Thin solid Films, 515, 8402 (2007).
    [146] A. Witvrouw, C. A. Volkert, F. Spaepen, Materials Science and Engineering A, 134, 1274 (1991).
    [147] O. B. Loopstra, E. R. van Snek, T. H. de Keijser, E. J. Mittemeijer, Physical Review B, 44, 13519 (1991).
    [148] S. E. Rosenberg, C. G. Madras, P. Y. Wong, I. N. Miaoulis, Journal of Materials Research, 12, 1706 (1997).
    [149] C. C. Li, S. B. Desu, Journal of Vacuum Science and Technology A, 14, 7 (1996).
    [150] V. Senez, D. Collard, B. Baccus, Journal of Applied Physics, 76, 3285 (1994).
    [151] D. Chin, S. Y. Oh, R. W. Dutton, IEEE Transactions on Electron Devices, 30, 993 (1983).
    [152] I. H. Shames, F. A. Cozzarelli, Elastic and inelastic stress analysis, Prentice-Hall, Englewood Cliffs, New Jersey, USA (1992).
    [153] C. C. Hall, Polymer materials: an introduction for technologists and scientists, John Wiley and Sons, New York (1981).
    [154] Y. Okada, Y. Tokumaru, Journal of Applied Physics, 56, 314 (1984).
    [155] C. C. Chiu, Journal of the American Ceramic Society, 73, 1999 (1990).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE