簡易檢索 / 詳目顯示

研究生: 廖培良
Liao, Pei-Liang
論文名稱: 作為三維光聲成像之CMOS 4×4電容式超音波感測器晶片
A CMOS 4×4 Capacitive Ultrasonic Sensor Chip for 3D Photoacoustic Imaging
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 邱一
方維倫
盧向成
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 77
中文關鍵詞: 電容式超音波感測器陣列光聲成像CMOS-MEMS
外文關鍵詞: capacitive sensor, array, photoacoustic imaging, CMOS-MEMS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了以CMOS-MEMS製程技術所製作之4×4電容式超音波感測器晶片。藉由將感測電路置於感測結構的下方,減少了拉線進而降低電路之寄生電容,有較好的訊噪比,同時也提高了面積利用效率。全新的晶片只要透過濕蝕刻釋放Metal 3,並以Parylene封閉蝕刻孔,簡單的兩個後製程步驟即可供實驗量測使用。單一感測器面積為280μm×280μm以9個(3×3)直徑60 μm的圓形薄膜並聯而成,總電容值為312.2 fF。感測陣列則是以16個(4×4)單一感測器所組成,總感測面積約1120μm×1120μm。實驗結果發現感測陣列中的16個感測器,均成功在水中收到5 MHz超音波探頭所發出的訊號,並在適當的量測條件下可達到數百mV的輸出。在光聲成像方面,運用馬達二維掃描物體的方式,單一感測器成功地呈現出6 μm碳纖維的3D影像,感測陣列則成功地呈現頭髮的3D影像。


    This study proposed a 4 × 4 capacitive ultrasonic sensor chip produced by CMOS-MEMS process technology. By using the sensing circuit placed at the bottom of the sensor structure, the routing interconnect is reduced, so is the parasitic capacitance. It had a better signal-to-noise-ratio, but also improved the efficiency of area utilization. The structures were released through wet etching (Metal 3), and sealed by using the Parylene. Nine membranes, each with an inner diameter of 60 μm, formed a single detection unit with the area of 280 μm × 280 μm and the capacitance value of 312.2 fF. The sensor array is composed of 16 (4 × 4) sensors with a total area of about 1120 μm × 1120 μm. The experimental results show that the 4 × 4 sensor array can successfully receive the signals of 5 MHz ultrasound in the water, outputs of hundreds of mV can be measured under appropriate measurement conditions. 2D large-aperture arrays were emulated by 2D mechanical scanning of a single sensing element or 16 (4 × 4) sensing elements. The 3D photoacoustic images of a carbon fiber and a hair were successfully produced.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 簡介 1 1.2 CMOS-MEMS技術 3 1.3 光聲成像原理與應用 6 1.4 相關文獻回顧 9 1.5 研究動機 13 1.6 論文架構 15 第二章 超音波感測器晶片之設計與模擬 16 2.1 電容式超音波感測器介紹 16 2.2 後製程 18 2.3 感測結構設計與模擬 20 2.4 感測電路設計與模擬 22 第三章 實驗與量測結果 32 3.1 後製程結果 32 3.2 電路量測 35 3.2.1 單一感測器電路量測結果與討論 35 3.2.2 感測陣列電路量測結果與討論 37 3.3 超音波訊號量測 41 3.3.1 實驗架構與流程 41 3.3.2 單一感測器超音波量測結果與討論 45 3.3.3 感測陣列超音波量測結果與討論 48 3.4 光聲成像 51 3.4.1 移動與定位系統 51 3.4.2 延遲相加波束合成技術 52 3.4.3 實驗架構與成像流程 53 3.4.4 單一感測器光聲成像結果與討論 57 3.4.5 感測陣列光聲成像結果與討論 62 第四章 結論與未來工作 72 4.1 結論 72 4.2 未來工作 72 參考文獻 75

    [1] A.G.Bell, “ On the Production and Reproduction of Sound by Light.”American Journal of Science. 20 ,p.305-324,1880.

    [2] Hoelen, C., et al., “Three-dimensional photoacoustic imaging of blood vessels in tissue. ” Optics letters. 23 ,p.648-650, 1998.

    [3] Wang, X., et al., “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. ”Nature Biotechnology. 21 ,p.803-806, 2003.

    [4] Wang, X., et al. “Noninvasive functional photoacoustic tomography of blood-oxygen saturation in the brain. ” 2004.

    [5] Xu, M. and L. Wang, “Photoacoustic imaging in biomedicine. ” Review of Scientific Instruments. 77 ,p.041101, 2006.

    [6] Zhang, H.F., et al., “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging.” Nature Biotechnology. 24 ,p.848-851, 2006.

    [7]L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography.” IEEE Journal of Selected Topics on Quantum
    Electronics. 14 ,p.171-179 , 2008.

    [8]Wang, L.V., “Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography. ”Disease markers. 19 ,p.123-138, 2003.

    [9] X.C. Jin, I. Ladabaum, and B.T. Khuri-Yakub, “The microfabrication of capacitive ultrasonic transducers. ” Journal of Microelectromechanical Systems. 7 ,p.295-302, 1998.

    [10] X. Jin, O. Oralkan, F. L. Degertekin, and B. T.Khuri Yakub, “Characterization of One Dimensional Capacitive Micromachined Ultrasonic Immersion Transducer Arrays.”IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control. 48,2001.
    [11]L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography.” IEEE Journal of Selected Topics on Quantum Electronics 14, p.171-179 ,2008.

    [12]H. F. Zhang, K. Maslov, M.-L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy.”Optics Express. 14, p.9317-9323,2006.

    [13]J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy.”Journal of Biomedical Optics. 11, p.034032 , 2006.

    [14]H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy.”Journal of Biomedical Optics. 11, p. 054033 ,2006.

    [15]M.Pramanik,G.Ku,C.H.Li,andL.V.Wang, “ Design and evaluation of a novel breast cancer detection system combining both thermoacoustic(TA) and photoacoustic(PA) tomography.”Medical Physics.35, p.2218-2223,2008.

    [16]X.Wang,X.Xie,G.Ku,G.Stoica,andL.V.Wang, “ Non-invasive imaging o f hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography.” Journal of
    Biomedical Optics.11, p.024015,2006.

    [17]X. Wang,D. L.Chamberland,andD. A.Jamadar, “ Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis.”Optics Letters. 32, p.3002-3004, 2007.
    [18] K. Suzuki, K. Higuchi, H. Tanigawa, “A silicon electrostatic ultrasonic transducer.” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 36, p.620-27, 1989.
    [19] M.I. Haller, and B.T. Khuri-Yakub, “A surface micromachined electrostatic ultrasonic air transducer.” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 43, p.1-6, 1996.

    [20] P.-C. Eccardt, K.Niederer, T.Scheiter, C.Hierold, “Surface micromachined ultrasound transducers in CMOS technology. “, 1996 IEEE Ultrasonics Symposium, 1996. Proceedings.2, p.959-962, 1996.

    [21] S. Vaithilingam, T.-J. Ma, Y. Furukawa, I. O. Wygant, X. Zhuang, A. de la Zerda, Ö. Oralkan, A. Kamaya, S. S. Gambhir, R. B. Jeffrey Jr., and B.T. Khuri-Yakub, , “Three-dimensional photoacoustic imaging using a two-dimensional CMUT array. ” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 56, p. 2411-19, 2009.

    [22] Esenaliev, R.O., A.A. Karabutov, and A.A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. ” IEEE Journal of Selected Topics in Quantum Electronics. 5, p. 981-988. , 1999.

    [23] Vaithilingam, S., et al. “Capacitive micromachined ultrasonic transducers (CMUTs) for photoacoustic imaging. ”

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE