簡易檢索 / 詳目顯示

研究生: 廖庭
Liao,Ting
論文名稱: 具備背景光消除及使用相位位移技巧使感光度提升的互補式金氧半導體深度影像感測器
A Time of Flight (ToF) CMOS Depth Image Sensor with In-Pixel Background Cancellation and Sensitivity Improvement Using Phase Shifting Readout Technique
指導教授: 謝志成
Hsieh, Chih Cheng
口試委員: 邱進峯
陳柏宏
陳新
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 80
中文關鍵詞: 深度影像互補式金氧半導體影像感測器時差測距法深度影像背景光消除固定圖像壓抑
外文關鍵詞: Depth imaging, CMOS image sensor, Time-of-flight imaging, Background cancellation, Fixed-pattern noise suppression
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 深度影像在多元的影像應用裡扮演重要的角色。許多逐漸增長的需求量來自於消費性電子的應用,像是:遊戲介面控制、機器人視覺、手勢偵測和安全系統。基於以上的應用,發展能夠在戶外背景光下操作,能夠及時擷取深度資訊並且具有高準確度的深度影像感測器成為非常重要的一個議題。因此在本論文裡,我們提出一個可以操作在戶外強光下具有抗背景光能力且具有良好感光度的深度影像感測器。
    本論文描述使用了可以應用於戶外的時差測距(TOF)並且具有背景光消除的互補式金氧半導體深度影像感測器。我們使用P+/N-well接面的感光二極體(photodiode),因此可以進行極性轉換的積分還有相位位移讀出(PSR),所以環境造成的背景光可以在前端被消除。因為使用了相位位移讀出的技巧,像素(pixel)的感光度(sensitivity)可以被大幅的提升。我們所使用的相位位移讀出能達到直欄像素陣列上的固定圖像雜訊(FPN)消除,並且在正常的操作下不需額外畫面的擷取。一個使用了TSMC 0.18μm 標準 1P6M製程所實現的64×64的影像感測器已經被實現且仔細的驗證。影像感測器的像素間距為20μm,填充因子為33%。在線性度為1.1%下的深度量測範圍為0.75到7.5公尺。量測到在最遠距7.5公尺下的相對準度為4.2%。背景光壓抑能力達至180k lux而不會飽和。


    Range image is one of the popular application in smart image sensor. The increase need for three-dimensional image has been created by consumer electronics applications such as gaming control, robotic vison, gesture recognition and security systems. For above applications, the design of depth camera capable of capturing three-dimensional information in real time with high accuracy under outdoor light illumination becomes very critical. In this thesis, a depth image sensor is proposed to improve the performance of background suppression at strong ambient light environments. The sensitivity is enhanced and hence improves the performance of depth information accuracy.
    This paper presents a CMOS time-of-flight (TOF) image sensor with in-pixel background light cancellation for outdoor depth imaging application. The usage of P+/N-well diode with proposed polarity switching integration and phase-shift readout (PSR) technique achieves the in-pixel background cancellation capability and sensitivity improvement. Moreover, the PSR also suppresses the column fixed-pattern-noise (FPN) without need of extra frame capturing. A prototype TOF sensing chip with 64×64 pixel array has been fabricated in TSMC standard 0.18μm CMOS process and verified. The pixel pitch is 20μm with a fill-factor of 33%. The achieved depth measurement range is 0.75 to 7.5 meters with a linearity error below 1.1%. The measured relative precision is 4.2% at a 7.5-meter target distance; and the background light suppression capability is up to 180k lux without saturation.

    ABSTRACT 2 CONTENTS 3 LIST OF FIGURES 5 LIST OF TABLES 8 CHAPTER 1 INTRODUCTION 9 1.1 MOTIVATION 9 1.2 THESIS CONTRIBUTION 10 1.3 THESIS ORGANIZATION 11 CHAPTER 2 BACKGROUND INFORMATION 13 2.1 SOLID-STATE IMAGING SENSING 14 2.1.1 CMOS Active Pixel Sensor 14 2.1.2 Standard Process APS 15 2.1.3 4T-APS 17 2.2 OVERVIEW OF RANGE MEASUREMENT TECHNIQUE 19 2.2.1 Passive Triangulation 19 2.2.2 Active Triangulation 20 2.2.3 Time-of-Flight Imaging 21 2.2.4 Discussion 24 2.3 THE CONSIDERATIONS OF TOF IMAGER 26 2.3.1 Optical Power of Light Source 26 2.3.2 Noise Limitation of Range Accuracy 27 2.3.3 Background Light Saturation Issue 30 2.4 SUMMARY 31 CHAPTER 3 TOF IMAGER WITH BGL SUBTRACTION AND SENSITIVITY IMPROVEMENT USING PHASE-SHIFT TECHNIQUE. 33 3.1 BGL SUPPRESSION TECHNIQUE IN INDIRECT TOF 33 3.1.1 Minimum-Charge Transfer (MCT) 34 3.1.2 Charge-Domain Subtraction 34 3.1.3 Voltage-Domain Subtraction 36 3.1.4 Column-level BGL Suppression 37 3.1.5 Summary 38 3.2 PROPOSED BGL SUPPRESSION AND SENSITIVITY ENHANCEMENT SCHEME 40 3.2.1 Proposed Current-Domain Subtraction 40 3.2.2 “Phase-Shift-Readout” Technique 42 3.3 SUMMARY 44 CHAPTER 4 PROTOTYPE DESIGN OF POLARITY-SWITCHING AND PHASE-SHIFT-READOUT TOF DEPTH IMAGE SENSOR 45 4.1 SYSTEM ARCHITECTURE OF TOF IMAGER 46 4.2 TOF PIXEL CIRCUIT 47 4.2.1 Integration Amplifier of ToF Pixel 48 4.2.2 Operation of ToF Pixel Circuit 50 4.2.3 Operation of Phase Shift Read out 52 4.2.4 Simulation of Depth Measurement 54 4.3 SINGLE-SLOPE ADC 56 4.3.1 Comparator 57 4.3.2 Counter and Output Latch 59 4.3.3 Ramp Generator 60 4.3.4 Read out simulation 57 4.3.5 Column and Row Select Circuit 61 4.4 TX BUFFER AND DELAY CONTROL 62 4.5 CHIP OPERATION 64 4.6 SUMMARY 65 CHAPTER 5 MEASUREMENT RESULTS 66 5.1 MEASUREMENT ENVIRONMENT SETUP 66 5.2 IMAGER DIE 69 5.3 PSR TECHNIQUE MEASUREMENT 70 5.4 BGL SUPPRESSION MEASUREMENT 72 5.5 DEPTH MEASUREMENT 72 5.6 SUMMARY 74 CHAPTER 6 CONCLUSIONS 75 6.1 SUMMARY 75 6.2 FUTURE WORK 75 BIBLIOGRAPHY 77

    [1] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a single time-of-flight camera,” in Proc. 2010 IEEE Comput. Soc. Conf. Computer Vision and Pattern Recognition, 2010,pp. 755–762.
    [2] M. V. d. Bergh and L. V. Gool, “CombiningRGB and ToF cameras for real-time 3D hand gesture interaction,” in Proc. 2011 IEEE Workshop on Applications of Computer Vision (WACV), 2011, pp. 66–72.
    [3] C.Niclass, M. Soga, H.Matsubara, S. Kato, andM. Kagami, “A 100-m range 10-frame/s 340 96-Pixel time-of-flight depth sensor in 0.18- μm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 559–572, Feb.2013.
    [4] Y. M. Wang, I. Ovsiannikov, S. Byun, T. Lee, Y. Lee, G. Waligorski,H.Wang, S. Lee, D.Min, Y. Park, T. Kim, C. Choi, G. Han, and E. R.Fossum, “Compact ambient light cancellation design and optimizationfor 3D time-of-flight image sensors,” in Proc. Int. Image Sensor Workshop,Snowbird, UT, USA, Jun. 2013, vol. 2.
    [5] T. Oggier, R. Kaufmann, M. Lehmann, B. Buttgen, S. Neukom, M. Richter, M. Schweizer, P. Metzler, F. Lustenberger, and N. Blanc,“Novel pixel architecture with inherent background suppression for 3D time-of-flight imaging,” Proc. SPIE, vol. 5665, no. 1, pp. 1–8,2005.
    [6] B. Büttgen and P. Seitz, “Robust optical time-of-flight range imagingbased on smart pixel structures,” IEEE Trans. Circuits Syst. I, Reg.Papers, vol. 55, no. 6, pp. 1512–1525, Jul. 2008.
    [7] Dipl.-Ing. Robert Lange, “3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD-Technology ”
    [8] Jun Ohta, “Smart_CMOS_Image_Sensors_and_Applications”
    [9] Mahmoud Abdelhamid, Jeffery Beers, Mohammed Omar, “Extracting Depth Information Using a Correlation Matching Algorithm”
    [10] Time-of-Flight 3D Imaging based on a SPAD-TDC Pixel Array in Standard 65 nm CMOS Technology, Priyanka Kumar.
    [11] C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp.1847–1854, Sep. 2005.
    [12] C. Niclass, M. Soga, H.Matsubara, S. Kato, andM. Kagami, “A 100-m range 10-frame/s 340 96-Pixel time-of-flight depth sensor in 0.18- m CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 559–572, Feb.2013.
    [13] J. Cho, J. Choi, S.-J. Kim, J. Shin, S. Park, J. D. K. Kim, and E. Yoon, “A 5.9μm -pixel 2D/3D image sensor with background supression over 100 klx,” in IEEE Symp. VLSI Circuits Dig., Jun. 2013, pp. C6–C7.
    [14] M. Young,Optics and Lasers: An Engineering Physics Approach
    [15] L.W. Huang, “A 1.8V Readout Integrated Circuit with Adaptive Transimpedance Control Amplifier for IR Focal Plane Arrays,” National Tsing Hua University, Oct. 2011.
    [16] R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron., vol. 37, no. 3, pp. 390–397, Mar. 2001.
    [17] Perenzoni, N. Massari, D. Stoppa, L. Pancheri, M. Malfatti, and L. Gonzo, “A 160 x120-pixels range camera with in-pixel correlated double sampling and fixed-pattern noise correction,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1672–1681,2011.
    [18] T. Oggier, R. Kaufmann, M. Lehmann, B. Buttgen, S. Neukom, M. Richter, M. Schweizer, P. Metzler, F. Lustenberger, and N. Blanc, “Novel pixel architecture with inherent background suppression for 3D time-of-flight imaging,” Proc. SPIE, vol. 5665, no. 1, pp. 1–8, 2005.
    [19] B. Büttgen and P. Seitz, “Robust optical time-of-flight range imaging based on smart pixel structures,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 6, pp. 1512–1525, Jul. 2008.
    [20] Wei-Fan Chou, Shang-Fu Yeh, Chih-Cheng Hsieh,“A 143dB 1.96% FPN Linear-Logarithmic CMOS Image Sensor with Threshold-Voltage Cancellation and Tunable Linear Range”, IEEE SENSORS, 2012.
    [21] Vishal Saxena, Boise State University ,“CMOS Comparator Design Extra Slides.”
    [22] David Stoppa, Lucio Pancheri, Nicola Massari, Mattia Malfatti, Matteo Perenzoni, Gianmaria Pedretti, Gian-Franco Dalla Betta “Time Of Flight Image Sensors in 0.18 um CMOS Technology:a Comparative Overview of Different Approaches.”
    [23] David Stoppa, , Nicola Massari, , Lucio Pancheri, Mattia Malfatti, ,Matteo Perenzoni, and Lorenzo Gonzo, “A Range Image Sensor Based on 10-um Lock-In Pixels in 0.18-um CMOS Imaging Technology,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 1, JANUARY 2011.
    [24] Jaehyuk Choi, Jungsoon Shin, Byongmin Kang,“An Architecture With Pipelined Background Suppression and In-Situ Noise Cancelling for 2D/3D CMOS Image Sensor,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 1, JANUARY 2015.
    [25] Zheng-Wei Huang, Chin-Fong Chiu* and Chih-Cheng Hsieh,“An In-pixel Equalizer with kTC Noise Cancellation and FPN Reduction for Time-of-Flight CMOS Image Sensor.”
    [26] Hans Ingelberts, Robin Deleener, Sven Boulanger, Maarten Kuijk, “ Continuous-wave time-of-flight CMOS detector with common mode feedback for strong background light applications.”
    [27] Milos Davidovic, Gerald Zach*, Kerstin Schneider-Hornstein and Horst Zimmermann “ Range Finding Sensor in 90nm CMOS with Bridge Correlator Based Background Light Suppression.”

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE