研究生: |
游至仕 You, Jhih-Shih |
---|---|
論文名稱: |
低維度系統中的多體現象 Many-body phenomena in low-dimensional systems |
指導教授: |
王道維
Wang, Daw-Wei |
口試委員: |
郭西川
葉崇傑 林秀豪 米格爾 Yip, Sungkit |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 131 |
中文關鍵詞: | 低維度系統 、多體 、凝態物理 、極冷物理 |
外文關鍵詞: | low-dimensional systems, many-body, condensed matter physics, ultra-cold physics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這個論文探討凝態與極冷物理在低維度系統的多體現象。在光晶格的使用和實驗技術的推進影響下,晶格的幾何結構,相互作用和原子/分子的受局限動力學的交叉影響,引起許多吸引人的量子現象。進一方面,現在固態物理學中出現了許多新穎的二維材料。因為能帶接觸跟自旋偶和交互作用的共同影響,這些二維材料的能帶結構展現了不尋常的拓樸特性。無論是從學術上,或是潛在的運用上,我們從理論的角度切入,去探討了解相互作用,晶格的扭曲或是自旋跟軌道的糾纏所帶來的困難之處,並去追尋低維度系統的多樣性。這篇論文主要分成下面幾個章節:
第一章我們從不同的角度或領域方向簡介低維度物理。
第二章我們研究具有非等向性躍遷的二維波色哈伯模型(Bose-Hubbard model)。我們研究了非等向性對超流態的旋性模量(helicity modulus)以及普通流體到超流體(normal-to-superfluid)的Berezinskii-Kosterlitz-Thouless(BKT)相變溫度。我們使用兩種不同的方法: 一種是大尺度的量子蒙地卡羅的數值方法,另一種是自洽簡諧近似(self-consistent harmonic approximation,SCHA)。對於SCHA法,我們考慮了兩種極端情形:一個是二維各向同性還有一個是趨近一維極限的非等向性。我們發現SCHA提供了超流態非常合理的描述。特別的是,SCHA非常正確的描述一維極限的非等向性。在這個情形下,BKT溫度趨近於零(進入量子相變) 而且量子擾動也顯得特別重要。
第三章我們研究了在光晶格中兩分量波色子的p軌域波色愛因斯坦凝結。我們發展了新的虛時演化法來數值計算Gross-Pitaevskii方程式。此方法可以去除比 p能帶還要低的量子態,此外,此方法還可以運用到更高的軌域。我們的研究驗證了同種分量間的作用力喜歡複數的波色愛因斯坦凝結。此類波色愛因斯坦凝結具有交錯的軌道流量。更有趣的是,在不同種分量間的作用力比較弱的時候,複數的波色愛因斯坦凝結有兩種分類,一種破壞時間反演對稱性,另一種沒有。然而,當不同種分量間的作用力變強,這兩種複數波色愛因斯坦凝結會經歷一個量子相變,並變成一個實數,並擁有時間反演的波色愛因斯坦凝結。此時,此種波色愛因斯坦凝結具有交錯的自旋密度結構。我們探討了這種相變的起源,還有在實驗中可能的量測。
在第四章我們提出一個實驗手法,如何在一個多層系統中,有效地產生統一長度的偶極鏈氣體。如此實驗手法得到的偶極鏈可以形成一個偶極鏈晶體,而且其系統溫度很容易經由初始的晶格位能或是實驗過程中的外部電場強度來控制。當鏈的密度增加,我們可以進一步觀察到一個從偶極鏈晶體相解離為二維層結構晶體的二階量子相變。當量子漲落比經典能量重要時,壓縮係數會發散並決定這個二階量子相變的相邊界。我們討論這種偶極鏈晶體及其量子相變的實驗現象。
石墨烯的弱自旋軌道耦合可以經由吸附原子沉積大幅提高(像是Weeks等人所著作的物理評論文章 Phys. Rev. X 1, 021001 (2011) ) 。然而,吸附原子的動力學也會誘發聲子和電子自旋之間的耦合。在第五章中,我們用群論和緊束縛模型,系統地研究了在均勻吸附原子的單層石墨烯上,低能量的聲子和電子自旋如何耦合。我們的結果為這個系統的未來研究,像是自旋輸運和超導,奠定基礎。在受到這些聲子和電子自旋耦合影響下,為了量化電子自旋動力學,我們計算電子和空穴的自旋反轉率。我們展示自旋反轉率對於準粒子能量和系統溫度有很強的依賴性。
This thesis reports on the study of many-body phenomena in low-dimensional systems in condensed matter and ultra-cold physics. With use of optical lattice potentials and enabling experimental techniques, many intriguing quantum phenomena have arisen from interplay between lattice geometry and
interactions with the confined dynamics of the atoms/molecules. On the other hand, a wide family of novel two-dimensional materials in solid state physics are available nowadays, exhibiting non-trivial topological properties of their band structure, which are caused by a combination of band-close and spin-orbital coupling. From the virtue of purely academic purpose or the view of potential applications, our works mainly pursue variations in low-dimensional systems in an effort to theoretically understand challenges involved with interactions, lattice distortions, or even the entanglement of the spin and orbital degrees of freedom. This PhD thesis will be divided into following chapters:
In Chapter 1, we very briefly introduce the low dimensional systems in various aspects and fields.
In Chapter 2, we study the two-dimensional Bose-Hubbard model with anisotropic hopping. Focusing on the effects of anisotropy on the superfluid properties such like the helicity modulus and the normal-to-superfluid
(Berezinskii- Kosterlitz-Thouless, BKT) transition temperature, two different approaches are compared: Large-scale Quantum Monte Carlo simulations and the self-consistent harmonic approximation (SCHA). For the latter, two different formulations are considered, one applying near the isotropic limit and the other applying in the extremely anisotropic limit. Thus we find that the SCHA provides a reasonable description of superfluid properties of this
system provided the appropriate type of formulation is employed. The accuracy of the SCHA in the extremely anisotropic limit, where the BKT transition temperature is tuned to zero (i.e. into a Quantum critical point) and
therefore quantum fluctuations play a dominant role, is particularly striking.
In Chapter 3, we investigate the unconventional Bose-Einstein condensations (BECs) of two-species mixture with the p-wave symmetry in the second band of a bipartite optical lattice. A new modified imaginary-time propagation
method is developed to numerically solve the Gross-Pitaevskii (GP) equation by truncating states in the lowest bands, and can be applicable to even higher orbital bands. Different from single-species case, the two-species
boson mixture exhibits two non-equivalent complex BECs: One breaks timereversal symmetry but one does not, in the dominant intra-species interaction regime. When the inter-species interaction is turned stronger, both states
undergo a quantum phase transition at the SU(2) invariant point toward a real-valued checkerboard state with a staggered spin density structure. We also discuss the lattice asymmetry, strong interaction effect and experimental implication.
In Chapter 4, we propose an experimental scheme to effectively assemble chains of dipolar gases with an uniform length in a multi-layer system. The obtained dipolar chains can form a chain crystal with the system temperature
easily controlled by the initial lattice potential and the external field strength during process. When the density of chains increases, we further observe a second order quantum phase transition for the chain crystal to be dissociated toward layers of 2D crystal, where the quantum fluctuation
dominates the classical energy and the compressibility diverges at the phase boundary. Experimental implication of such dipolar chain crystal and its quantum phase transition is also discussed.
The naturally weak spin-orbit coupling in Graphene can be largely enhanced by adatom deposition (e.g. Weeks et al. Phys. Rev. X 1, 021001 (2011)). However, the dynamics of the adatoms also induces a coupling between phonons and the electron spin. In Chapter 5, using group theory and a
tight-binding model, we systematically investigate the coupling between the low-energy in-plane phonons and the electron spin in single-layer graphene uniformly decorated with heavy adatoms. Our results provide the foundation
for future investigations of spin transport and superconductivity in this system. In order to quantify the effect of the coupling to the lattice on the electronic spin dynamics, we compute the spin-flip rate of electrons and holes. We show that the latter exhibits a strong dependence on the quasi-particle energy and system temperature.
[1] K. S. Novoselov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, oct 2004.
[2] C. Lee, X. Wei, J. W. Kysar, and J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385–388, jul 2008.
[3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics, 81(1):109–162, jan 2009.
[4] Alexander S. Mayorov, Roman V. Gorbachev, Sergey V. Morozov, Liam Britnell, Rashid Jalil, Leonid A. Ponomarenko, Peter Blake, Kostya S. Novoselov, Kenji Watanabe, Takashi Taniguchi, and A. K. Geim. Micrometer-scale ballistic transport in encapsulated graphene
at room temperature. Nano Letters, 11(6):2396–2399, jun 2011.
[5] A. Rycerz, J. Tworzyd lo, and C. W. J. Beenakker. Valley filter and valley valve in graphene. Nature Physics, 3(3):172–175, feb 2007.
[6] Bj¨orn Trauzettel, Denis V. Bulaev, Daniel Loss, and Guido Burkard. Spin qubits in graphene quantum dots. Nature Physics, 3(3):192–196, feb 2007.
[7] Edward McCann and Mikito Koshino. The electronic properties of bilayer graphene. Rep. Prog. Phys., 76(5):056503, apr 2013.
[8] Yi Zhang, Luyao Zhang, and Chongwu Zhou. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res., 46(10):2329–2339, oct 2013.
[9] Patrick Vogt, Paola De Padova, Claudio Quaresima, Jose Avila, Emmanouil Frantzeskakis, Maria Carmen Asensio, Andrea Resta, B´en´edicte Ealet, and Guy Le Lay. Silicene: Compelling experimentalevidence for graphenelike two-dimensional silicon. Phys. Rev. Lett.,
108(15), apr 2012.
[10] Antoine Fleurence, Rainer Friedlein, Taisuke Ozaki, Hiroyuki Kawai, Ying Wang, and Yukiko Yamada-Takamura. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett., 108(24),
jun 2012.
[11] Elisabeth Bianco, Sheneve Butler, Shishi Jiang, Oscar D. Restrepo, Wolfgang Windl, and Joshua E. Goldberger. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano, 7(5):4414–4421, may 2013.
[12] KenjiWatanabe, Takashi Taniguchi, and Hisao Kanda. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride
single crystal. Nat Mater, 3(6):404–409, may 2004.
[13] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, and Michael S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech,
7(11):699–712, nov 2012.
[14] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80:885–964, Jul 2008.
[15] J M Kosterlitz and D J Thouless. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys.,
6(7):1181–1203, apr 1973.
[16] D. J. Bishop and J. D. Reppy. Study of the superfluid transition in two-dimensional he 4 films. Phys. Rev. Lett., 40(26):1727–1730, jun 1978.
[17] Zoran Hadzibabic, Peter Kr¨uger, Marc Cheneau, Baptiste Battelier, and Jean Dalibard. Berezinskii–kosterlitz–thouless crossover in a trapped atomic gas. Nature, 441(7097):1118–1121, jun 2006.
[18] P. Clad´e, C. Ryu, A. Ramanathan, K. Helmerson, and W. Phillips. Observation of a 2d bose gas: From thermal to quasicondensate to superfluid. Phys. Rev. Lett., 102(17), apr 2009.
[19] V. Schweikhard, S. Tung, and E. A. Cornell. Vortex proliferation in the berezinskii-kosterlitz-thouless regime on a two-dimensional lattice of bose-einstein condensates. Phys. Rev. Lett., 99(3), jul 2007.
[20] Matthew P. A. Fisher, Peter B. Weichman, G. Grinstein, and Daniel S. Fisher. Boson localization and the superfluid-insulator transition. Physical Review B, 40(1):546–570, jul 1989.
[21] Elmar Haller, Russell Hart, Manfred J. Mark, Johann G. Danzl, Lukas Reichs¨ollner, Mattias Gustavsson, Marcello Dalmonte, Guido Pupillo, and Hanns-Christoph N¨agerl. Pinning quantum phase transition for a luttinger liquid of strongly interacting bosons. Nature, 466(7306):597–
600, jul 2010.
[22] Lewi Tonks. The complete equation of state of one, two and threedimensional gases of hard elastic spheres. Physical Review, 50(10):955–963, nov 1936.
[23] M. Girardeau. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys., 1(6):516, 1960.
[24] T. Kinoshita. Observation of a one-dimensional tonks-girardeau gas. Science, 305(5687):1125–1128, aug 2004.
[25] Bel´en Paredes, Artur Widera, Valentin Murg, Olaf Mandel, Simon F¨olling, Ignacio Cirac, Gora V. Shlyapnikov, Theodor W. H¨ansch, and Immanuel Bloch. Tonks–girardeau gas of ultracold atoms in an optical lattice. Nature, 429(6989):277–281, may 2004.
[26] Thilo St¨oferle, Henning Moritz, Christian Schori, Michael K¨ohl, and Tilman Esslinger. Transition from a strongly interacting 1d superfluid to a mott insulator. Phys. Rev. Lett., 92:130403, Mar 2004.
[27] A. F. Ho, M. A. Cazalilla, and T. Giamarchi. Deconfinement in a 2d optical lattice of coupled 1d boson systems. Phys. Rev. Lett., 92(13), apr 2004.
[28] M A Cazalilla, A F Ho, and T Giamarchi. Interacting bose gases in quasi-one-dimensional optical lattices. New J. Phys., 8(8):158–158, aug 2006.
[29] M. A. Cazalilla, A. Iucci, and T. Giamarchi. Competition between vortex unbinding and tunneling in an optical lattice. Physical Review A, 75(5), may 2007.
[30] L. Mathey, A. Polkovnikov, and A. H. Castro Neto. Phase-locking transition of coupled low-dimensional superfluids. Europhys. Lett., 81(1):10008, dec 2007.
[31] Jhih-Shih You, Hao Lee, Shiang Fang, Miguel A. Cazalilla, and Daw-Wei Wang. Tuning the kosterlitz-thoules transition to zero temperaturein anisotropic boson systems. Physical Review A, 86(4), oct 2012.
[32] A. Isacsson and S. M. Girvin. Multi-flavor bosonic Hubbard models in the first excited Bloch band of an optical lattice. Phys. Rev. A, 72:053604, 2005.
[33] V. W. Scarola and S. Das Sarma. Quantum phases of the extended bose-hubbard hamiltonian: Possibility of a supersolid state of cold atoms in optical lattices. Phys. Rev. Lett., 95:033003, Jul 2005.
[34] Ofir E. Alon, Alexej I. Streltsov, and Lorenz S. Cederbaum. Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices. Phys. Rev. Lett., 95:030405, Jul 2005.
[35] W. V. Liu and C. Wu. Atomic matter of nonzero-momentum boseeinstein condensation and orbital current order. Phys. Rev. A, 74:13607, 2006.
[36] C. Wu, W. V. Liu, J. E. Moore, and S. Das Sarma. Quantum stripe ordering in optical lattices. Phys. Rev. Lett., 97:190406, 2006.
[37] A. B. Kuklov. Unconventional strongly interacting bose-einstein condensates in optical lattices. Phys. Rev. Lett., 97:110405, 2006.
[38] Vladimir M. Stojanovi´c, Congjun Wu, W. Vincent Liu, and S. Das Sarma. Incommensurate superfluidity of bosons in a doublewell optical lattice. Phys. Rev. Lett., 101(12):125301, Sep 2008.
[39] A. Collin, J. Larson, and J. P. Martikainen. Quantum states of p-band bosons in optical lattices. Phys. Rev. A, 81:023605, Feb 2010.
[40] Xiaopeng Li, Erhai Zhao, and W. Vincent Liu. Effective action approach to the p-band mott insulator and superfluid transition. Phys. Rev. A, 83:063626, Jun 2011.
[41] Zi Cai and Congjun Wu. Complex and real unconventional boseeinstein condensations in high orbital bands. Phys. Rev. A, 84:033635, Sep 2011.
[42] J.-P. Martikainen. Dynamical instability and loss of p-band bosons in optical lattices. Phys. Rev. A, 83:013610, Jan 2011.
[43] Zi Cai, Lu-Ming Duan, and Congjun Wu. Phase-sensitive detection for unconventional bose-einstein condensation. Phys. Rev. A, 86:051601, Nov 2012.
[44] Yong Xu, Zhu Chen, Hongwei Xiong, W. Vincent Liu, and Biao Wu. Stability of p-orbital bose-einstein condensates in optical checkerboard and square lattices. Phys. Rev. A, 87:013635, Jan 2013.
[45] Boyang Liu, Xiao-Lu Yu, and Wu-Ming Liu. Renormalization-group analysis of p-orbital bose-einstein condensates in a square optical lattice. Phys. Rev. A, 88:063605, Dec 2013.
[46] F. H´ebert, Zi Cai, V. G. Rousseau, Congjun Wu, R. T. Scalettar, and G. G. Batrouni. Exotic phases of interacting p-band bosons. Phys. Rev. B, 87:224505, Jun 2013.
[47] Xiaopeng Li, Arun Paramekanti, Andreas Hemmerich, and W. Vincent Liu. Proposed formation and dynamical signature of a chiral bose liquid in an optical lattice. Nat Comms, 5, feb 2014.
[48] J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto. Lattice of double wells for manipulating pairs of cold atoms. Phys. Rev. A, 73:033605, Mar 2006.
[49] T. Mueller, S. Foelling, A. Widera, and I. Bloch. State preparation and dynamics of ultracold atoms in higher lattice orbitals. Phys. Rev. Lett., 99:200405, 2007.
[50] G. Wirth, M. ¨ Olschl¨ager, and A. Hemmerich. Evidence for orbital superfluidity in the P-band of a bipartite optical square lattice. Nat. Phys., 7:147–153, February 2011.
[51] M. ¨ Olschl¨ager, G. Wirth, and A. Hemmerich. Unconventional Superfluid Order in the F Band of a Bipartite Optical Square Lattice. Phys. Rev. Lett., 106(1):015302, January 2011.
[52] M. ¨ Olschl¨ager, G. Wirth, T. Kock, and A. Hemmerich. Topologically Induced Avoided Band Crossing in an Optical Checkerboard Lattice. Phys. Rev. Lett., 108(7):075302, February 2012.
[53] M ¨ Olschl¨ager, T Kock, G Wirth, A Ewerbeck, C Morais Smith, and A Hemmerich. Interaction-induced chiral p x ± ip y superfluid order of bosons in an optical lattice. New J. Phys., 15(8):083041, aug 2013.
[54] T. Kock, M. ¨ Olschl¨ager, A. Ewerbeck, W.-M. Huang, L. Mathey, and A. Hemmerich. Observing chiral superfluid order by matter-wave interference. Phys. Rev. Lett., 114:115301, Mar 2015.
[55] C. Wu. Unconventional Bose-Einstein Condensations Beyond the No-Node Theorem. Mod. Phys. Lett. B, 23:1–24, 2009.
[56] R. P. Feynman. Statistical Mechanics, A Set of Lectures. Addison-Wesley Publishing Company, 1972.
[57] P. W. Anderson and P. Morel. Generalized bardeen-cooper-schrieffer states and the proposed low-temperature phase of liquid he3. Phys. Rev., 123:1911–1934, Sep 1961.
[58] W. F. Brinkman, J. W. Serene, and P. W. Anderson. Spin-fluctuation stabilization of anisotropic superfluid states. Phys. Rev. A, 10:2386– 2394, Dec 1974.
[59] R. Balian and N. R. Werthamer. Superconductivity with pairs in a relative p wave. Phys. Rev., 131:1553–1564, Aug 1963.
[60] Anthony J. Leggett. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys., 47:331–414, Apr 1975.
[61] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg. Superconductivity in a layered perovskite without copper. Nature, 372(6506):532–534, dec 1994.
[62] Andrew Peter Mackenzie and Yoshiteru Maeno. The superconductivity of sr2ruo4 and the physics of spin-triplet pairing. Rev. Mod. Phys., 75:657–712, May 2003.
[63] K. D. Nelson. Odd-parity superconductivity in sr2ruo4. Science, 306(5699):1151–1154, nov 2004.
[64] F. Kidwingira, J. D. Strand, D. J. Van Harlingen, and Y. Maeno. Dynamical superconducting order parameter domains in sr2ruo4. Science, 314(5803):1267–1271, nov 2006.
[65] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye. A high phase-space-density gas of polar molecules. Science, 322(5899):231–235, oct 2008.
[66] J. Deiglmayr, A. Grochola, M. Repp, K. M¨ortlbauer, C. Gl¨uck, J. Lange, O. Dulieu, R. Wester, and M. Weidem¨uller. Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett., 101(13), sep 2008.
[67] K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye. Coherent transfer of photoassociated molecules into the rovibrational ground state. Phys. Rev. Lett., 105(20), nov 2010.
[68] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino. Bose-einstein condensation of erbium. Phys. Rev. Lett., 108(21), may 2012.
[69] Mingwu Lu, Nathaniel Q. Burdick, and Benjamin L. Lev. Quantum degenerate dipolar fermi gas. Phys. Rev. Lett., 108(21), may 2012.
[70] M. Saffman, T. G. Walker, and K. Mølmer. Quantum information with rydberg atoms. Reviews of Modern Physics, 82(3):2313–2363, aug 2010.
[71] Peter Schauß, Marc Cheneau, Manuel Endres, Takeshi Fukuhara, Sebastian Hild, Ahmed Omran, Thomas Pohl, Christian Gross, Stefan Kuhr, and Immanuel Bloch. Observation of spatially ordered structures in a two-dimensional rydberg gas. Nature, 491(7422):87–91, oct
2012.
[72] T Lahaye, C Menotti, L Santos, M Lewenstein, and T Pfau. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys., 72(12):126401, nov 2009.
[73] M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller. Condensed matter theory of dipolar quantum gases. Chem. Rev., 112(9):5012– 5061, sep 2012.
[74] Goulven Qu´em´ener and John L. Bohn. Electric field suppression of ultracold confined chemical reactions. Physical Review A, 81(6), jun 2010.
[75] Andrea Micheli, Zbigniew Idziaszek, Guido Pupillo, Mikhail A. Baranov, Peter Zoller, and Paul S. Julienne. Universal rates for reactive ultracold polar molecules in reduced dimensions. Phys. Rev. Lett., 105(7), aug 2010.
[76] M. H. G. de Miranda, A. Chotia, B. Neyenhuis, D.Wang, G. Qu´em´ener, S. Ospelkaus, J. L. Bohn, J. Ye, and D. S. Jin. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nature Physics,
7(6):502–507, mar 2011.
[77] Johann G. Danzl, Manfred J. Mark, Elmar Haller, Mattias Gustavsson, Russell Hart, Jesus Aldegunde, Jeremy M. Hutson, and Hanns-Christoph N¨agerl. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nature Physics, 6(4):265–270, feb 2010.
[78] Amodsen Chotia, Brian Neyenhuis, Steven A. Moses, Bo Yan, Jacob P.Covey, Michael Foss-Feig, Ana Maria Rey, Deborah S. Jin, and Jun Ye. Long-lived dipolar molecules and feshbach molecules in a 3d optical lattice. Phys. Rev. Lett., 108(8), feb 2012.
[79] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quemener, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science, 327(5967):853–857, feb 2010.
[80] X. F. Wang and Tapash Chakraborty. Charge transfer via a two-strand superexchange bridge in DNA. Phys. Rev. Lett., 97(10), sep 2006.
[81] M. Klawunn, J. Duhme, and L. Santos. Bose-fermi mixtures of self-assembled filaments of fermionic polar molecules. Physical Review A, 81(1), jan 2010.
[82] Andrew C. Potter, Erez Berg, Daw-Wei Wang, Bertrand I. Halperin, and Eugene Demler. Superfluidity and dimerization in a multilayered system of fermionic polar molecules. Phys. Rev. Lett., 105(22), nov 2010.
[83] A. G. Volosniev, J. R. Armstrong, D. V. Fedorov, A. S. Jensen, and N. T. Zinner. Bound chains of tilted dipoles in layered systems. Few-Body Syst, 54(5-6):707–715, apr 2012.
[84] J. R. Armstrong, N. T. Zinner, D. V. Fedorov, and A. S. Jensen. Thermodynamics of dipolar chain systems. Few-Body Syst, 54(5-6):605–618, jul 2012.
[85] M. Z. Hasan and C. L. Kane. Colloquium : Topological insulators. Reviews of Modern Physics, 82(4):3045–3067, nov 2010.
[86] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and superconductors. Reviews of Modern Physics, 83(4):1057–1110, oct 2011.
[87] M. Zahid Hasan and Joel E. Moore. Three-dimensional topological insulators. Annual Review of Condensed Matter Physics, 2(1):55–78, mar 2011.
[88] Yoichi Ando. Topological insulator materials. Journal of the Physical Society of Japan, 82(10):102001, oct 2013.
[89] B. Andrei Bernevige and Taylor L. Hughes. Topological insulators and topological superconductors(2013).
[90] Joseph Maciejko and Gregory A. Fiete. Fractionalized topological insulators. Nature Physics, 11(5):385–388, apr 2015.
[91] Oskar Vafek and Ashvin Vishwanath. Dirac fermions in solids: From high-t c cuprates and graphene to topological insulators and weyl semimetals. Annual Review of Condensed Matter Physics, 5(1):83–112, mar 2014.
[92] Jason Alicea. New directions in the pursuit of majorana fermions in solid state systems. Rep. Prog. Phys., 75(7):076501, jun 2012.
[93] C.W.J. Beenakker. Search for majorana fermions in superconductors. Annual Review of Condensed Matter Physics, 4(1):113–136, apr 2013.
[94] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics, 321(1):2–111, jan 2006.
[95] K. v. Klitzing, G. Dorda, and M. Pepper. New method for highaccuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45(6):494–497, aug 1980.
[96] D. C. Tsui, H. L. Stormer, and A. C. Gossard. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48(22):1559–1562, may 1982.
[97] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49(6):405–408, aug 1982.
[98] Barry Simon. Holonomy, the quantum adiabatic theorem, and berry’s phase. Phys. Rev. Lett., 51(24):2167–2170, dec 1983.
[99] Qian Niu, D. J. Thouless, and Yong-Shi Wu. Quantized hall conductance as a topological invariant. Physical Review B, 31(6):3372–3377, mar 1985.
[100] Mahito Kohmoto. Topological invariant and the quantization of the hall conductance. Annals of Physics, 160(2):343–354, apr 1985.
[101] J. E. Avron, R. Seiler, and B. Simon. Homotopy and quantization in condensed matter physics. Phys. Rev. Lett., 51(1):51–53, jul 1983.
[102] Di Xiao, Ming-Che Chang, and Qian Niu. Berry phase effects on electronic properties. Reviews of Modern Physics, 82(3):1959–2007, jul 2010.
[103] Shiing-Shen Chern and James Simons. Characteristic forms and geometric invariants. The Annals of Mathematics, 99(1):48, jan 1974.
[104] Edward Witten. Topological quantum field theory. Communications in Mathematical Physics, 117(3):353–386, sep 1988.
[105] Xiao-Gang Wen. Quantum field theory of many-body systems ( Oxford University Press, 2004).
[106] C. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev. Lett., 95(22), nov 2005.
[107] C. L. Kane and E. J. Mele. Z 2 topological order and the quantum spin hall effect. Phys. Rev. Lett., 95(14), sep 2005.
[108] J. E. Moore and L. Balents. Topological invariants of time-reversal invariant band structures. Physical Review B, 75(12), mar 2007.
[109] Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang. Topological field theory of time-reversal invariant insulators. Physical Review B, 78(19), nov 2008.
[110] Rahul Roy. Topological phases and the quantum spin hall effect in three dimensions. Physical Review B, 79(19), may 2009.
[111] Daniel Huertas-Hernando, F. Guinea, and Arne Brataas. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Physical Review B, 74(15), oct 2006.
[112] Yugui Yao, Fei Ye, Xiao-Liang Qi, Shou-Cheng Zhang, and Zhong Fang. Spin-orbit gap of graphene: First-principles calculations. Physical Review B, 75(4), jan 2007.
[113] Hongki Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, Leonard Kleinman, and A. H. MacDonald. Intrinsic and rashba spin-orbit interactions in graphene sheets. Physical Review B, 74(16), oct 2006.
[114] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian. Band-structure topologies of graphene: Spin-orbit coupling effects from first principles. Physical Review B, 80(23), dec 2009.
[115] A. H. Castro Neto and F. Guinea. Impurity-induced spin-orbit coupling in graphene. Phys. Rev. Lett., 103(2), jul 2009.
[116] Conan Weeks, Jun Hu, Jason Alicea, Marcel Franz, and Ruqian Wu. Engineering a robust quantum spin hall state in graphene via adatom deposition. Phys. Rev. X, 1(2), oct 2011.
[117] Samir Abdelouahed, A. Ernst, J. Henk, I. V. Maznichenko, and I. Mertig. Spin-split electronic states in graphene: Effects due to lattice deformation, rashba effect, and adatoms by first principles. Physical Review
B, 82(12), sep 2010.
[118] Zhenhua Qiao, Shengyuan A. Yang, Wanxiang Feng, Wang-Kong Tse, Jun Ding, Yugui Yao, Jian Wang, and Qian Niu. Quantum anomalous hall effect in graphene from rashba and exchange effects. Physical Review B, 82(16), oct 2010.
[119] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. H¨ansch, and Immanuel Bloch. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature, 415(6867):39–44, jan 2002.
[120] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81:3108–3111, Oct 1998.
[121] Chen-Lung Hung, Xibo Zhang, Nathan Gemelke, and Cheng Chin. Observation of scale invariance and universality in two-dimensional bose gases. Nature, 470(7333):236–239, jan 2011.
[122] S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I. Bloch, N. V. Prokof’ev, B. Svistunov, and M. Troyer. Suppression of the critical temperature for superfluidity near the mott transition. Nature Physics, 6(12):998–1004, oct 2010.
[123] C Becker, P Soltan-Panahi, J Kronj¨ager, S D¨orscher, K Bongs, and K Sengstock. Ultracold quantum gases in triangular optical lattices. New J. Phys., 12(6):065025, jun 2010.
[124] X. Zhang, C.-L. Hung, S.-K. Tung, and C. Chin. Observation of quantum criticality with ultracold atoms in optical lattices. Science, 335(6072):1070–1072, feb 2012.
[125] Vittorio Cataudella and Petter Minnhagen. Simple estimates for vortex fluctuations in connection with high-tc superconductors. Physica C: Superconductivity, 166(5-6):442–450, apr 1990.
[126] Biplab Chattopadhyay and Subodh R. Shenoy. Kosterlitz-thouless signatures from 3d vortex loops in layered superconductors. Phys. Rev. Lett., 72(3):400–403, jan 1994.
[127] Petter Minnhagen and Peter Olsson. Monte carlo calculation of the vortex interaction for high- t c superconductors. Physical Review B, 44(9):4503–4511, sep 1991.
[128] L. Benfatto, C. Castellani, and T. Giamarchi. Kosterlitz-thouless behavior in layered superconductors: The role of the vortex core energy. Phys. Rev. Lett., 98(11), mar 2007.
[129] Oleg A. Starykh and Leon Balents. Ordering in spatially anisotropic triangular antiferromagnets. Phys. Rev. Lett., 98(7), feb 2007.
[130] Masanori Kohno, Oleg A. Starykh, and Leon Balents. Spinons and triplons in spatially anisotropic frustrated antiferromagnets. Nature Physics, 3(11):790–795, oct 2007.
[131] Thierry Giamarchi, Christian R¨uegg, and Oleg Tchernyshyov. Bose–einstein condensation in magnetic insulators. Nature Physics, 4(3):198–204, mar 2008.
[132] Ch. R¨uegg, K. Kiefer, B. Thielemann, D. F. McMorrow, V. Zapf, B. Normand, M. B. Zvonarev, P. Bouillot, C. Kollath, T. Giamarchi, S. Capponi, D. Poilblanc, D. Biner, and K. W. Kr¨amer. Thermodynamics of the spin luttinger liquid in a model ladder material. Phys Rev. Lett., 101(24), dec 2008
[133] Pierre Bouillot, Corinna Kollath, Andreas M. L¨auchli, Mikhail Zvonarev, Benedikt Thielemann, Christian R¨uegg, Edmond Orignac, Roberta Citro, Martin Klanjˇsek, Claude Berthier, Mladen Horvati´c,and Thierry Giamarchi. Statics and dynamics of weakly coupled antiferromagnetic
spin- 1 2 ladders in a magnetic field. Physical Review
B, 83(5), feb 2011.
[134] W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett., 42(25):1698–1701, jun 1979.
[135] R. B. Laughlin. Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett., 50(18):1395–1398, may 1983.
[136] Daniel Arovas, J. R. Schrieffer, and Frank Wilczek. Fractional statistics and the quantum hall effect. Phys. Rev. Lett., 53(7):722–723, aug 1984.
[137] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol. One dimensional bosons: From condensed matter systems to ultracold gases. Reviews of Modern Physics, 83(4):1405–1466, dec 2011.
[138] D. M. Gangardt, P. Pedri, L. Santos, and G. V. Shlyapnikov. Mottinsulator phase of coupled one-dimensional atomic gases in a twodimensional optical lattice. Phys. Rev. Lett., 96(4), jan 2006.
[139] Sara Bergkvist, Anders Rosengren, Robert Saers, Emil Lundh, Magnus Rehn, and Anders Kastberg. Transition from a two-dimensional superfluid to a one-dimensional mott insulator. Phys. Rev. Lett., 99(11), sep 2007.
[140] M. Rehn, S. Bergkvist, A. Rosengren, R. Saers, M. Zeln, E. Lundh, and A. Kastberg. One-dimensional phase transitions in a two-dimensional optical lattice. The European Physical Journal D, 49(2):223–230, 2008.
[141] J. K. Freericks. Effect of anisotropic hopping on the bose-hubbard model phase diagram: Strong-coupling perturbation theory on a square lattice. Physical Review A, 78(1), jul 2008.
[142] Junko Taniguchi, Yosuke Aoki, and Masaru Suzuki. Superfluidity of liquid h 4 e confined to one-dimensional straight nanochannel structures.
Physical Review B, 82(10), sep 2010.
[143] Junko Taniguchi, Rina Fujii, and Masaru Suzuki. Superfluidity and BEC of liquid 4 he confined in a nanometer-size channel. Physical Review B, 84(13), oct 2011.
[144] David R. Nelson and J. M. Kosterlitz. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett., 39(19):1201–1205, nov 1977.
[145] Thierry Giamarchi and B. Sriram Shastry. Persistent currents in a onedimensional ring for a disordered hubbard model. Physical Review B, 51(16):10915–10922, apr 1995.
[146] Adrian Del Maestro and Ian Affleck. Interacting bosons in one dimension and the applicability of luttinger-liquid theory as revealed by path-integral quantum monte carlo calculations. Physical Review B, 82(6), aug 2010.
[147] Thomas Eggel, Miguel A. Cazalilla, and Masaki Oshikawa. Dynamical theory of superfluidity in one dimension. Phys. Rev. Lett., 107(27), dec 2011.
[148] Jorge V. Jos´e, Leo P. Kadanoff, Scott Kirkpatrick, and David R. Nelson. Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Physical Review B, 16(3):1217–
1241, aug 1977.
[149] Naoto Nagaosa. Quantum field theory in condensed matter physics(springer, heidelberg, germany, 1999).
[150] Lode Pollet, Kris Van Houcke, and Stefan M.A. Rombouts. Engineering local optimality in quantum monte carlo algorithms. Journal of Computational Physics, 225(2):2249–2266, aug 2007.
[151] Barbara Capogrosso-Sansone, S¸ebnem G¨une¸s S¨oyler, Nikolay Prokof’ev, and Boris Svistunov. Monte carlo study of the twodimensional bose-hubbard model. Physical Review A, 77(1), jan 2008.
[152] Lode Pollet, Corinna Kollath, Kris Van Houcke, and Matthias Troyer. Temperature changes when adiabatically ramping up an optical lattice.
New J. Phys., 10(6):065001, jun 2008.
[153] Nikolai V. Prokof’ev and Boris V. Svistunov. Two definitions of superfluid density. Physical Review B, 61(17):11282–11284, may 2000.
[154] Michael E. Fisher, Michael N. Barber, and David Jasnow. Helicity modulus, superfluidity, and scaling in isotropic systems. Physical Review
A, 8(2):1111–1124, aug 1973.
[155] E. L. Pollock and D. M. Ceperley. Path-integral computation of superfluid densities. Physical Review B, 36(16):8343–8352, dec 1987.
[156] M A Cazalilla. Bosonizing one-dimensional cold atomic gases. J. Phys. B: At. Mol. Opt. Phys., 37(7):S1–S47, mar 2004.
[157] D. A. Wollman, D. J. Van Harlingen, W. C. Lee, D. M. Ginsberg, and A. J. Leggett. Experimental determination of the superconducting pairing state in ybco from the phase coherence of ybco-pb dc squids.
Phys. Rev. Lett., 71:2134–2137, Sep 1993.
[158] C. C. Tsuei, J. R. Kirtley, C. C. Chi, Lock See Yu-Jahnes, A. Gupta, T. Shaw, J. Z. Sun, and M. B. Ketchen. Pairing symmetry and flux quantization in a tricrystal superconducting ring of yba2cu3o7. Phys. Rev. Lett., 73:593–596, Jul 1994.
[159] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman. Production of two overlapping bose-einstein condensates by sympathetic
cooling. Phys. Rev. Lett., 78(4):586–589, 1997.
[160] Jacob F. Sherson, ChristofWeitenberg, Manuel Endres, Marc Cheneau, Immanuel Bloch, and Stefan Kuhr. Single-atom-resolved fluorescence imaging of an atomic mott insulator. Nature, 467(7311):68–72, aug 2010.
[161] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Folling, L. Pollet, and M. Greiner. Probing the superfluid-to-mott insulator transition at the single-atom level. Science, 329(5991):547–550, jun 2010.
[162] V. S. Shchesnovich and V. V. Konotop. Nonlinear tunneling of bose-einstein condensates in an optical lattice: Signatures of quantum collapse
and revival. Phys. Rev. A, 75:063628, Jun 2007.
[163] V. S. Shchesnovich. Mesoscopic quantum switching of a bose-einstein condensate in an optical lattice governed by the parity of the number of atoms. Phys. Rev. A, 80:031601, Sep 2009.
[164] V. S. Shchesnovich and V. V. Konotop. Quantum switching at a mean-field instability of a bose-einstein condensate in an optical lattice. Phys.
Rev. Lett., 102:055702, Feb 2009.
[165] Axel Griesmaier, J¨org Werner, Sven Hensler, J¨urgen Stuhler, and Tilman Pfau. Bose-einstein condensation of chromium. Phys. Rev.Lett., 94(16), apr 2005.
[166] Q. Beaufils, R. Chicireanu, T. Zanon, B. Laburthe-Tolra, E. Mar´echal,L. Vernac, J.-C. Keller, and O. Gorceix. All-optical production of chromium bose-einstein condensates. Physical Review A, 77(6), jun 2008.
[167] Zhu Kun-Yan, Tan Lei, Gao Xiang, and Wang Daw-Wei. Quantum
fluids of self-assembled chains of polar molecules at finite temperature.
Chinese Physics Letters, 25(1):48–51, jan 2008.
[168] Xin Lu, Chang-Qin Wu, Andrea Micheli, and Guido Pupillo. Structure
and melting behavior of classical bilayer crystals of dipoles. Physical
Review B, 78(2), jul 2008.
[169] B. Capogrosso-Sansone and A. B. Kuklov. Superfluidity of flexible
chains of polar molecules. Journal of Low Temperature Physics, 165(5-
6):213–226, jul 2011.
[170] Michael Knap, Erez Berg, Martin Ganahl, and Eugene Demler. Clustered
wigner-crystal phases of cold polar molecules in arrays of onedimensional
tubes. Physical Review B, 86(6), aug 2012.
[171] J. R. Armstrong, N. T. Zinner, D. V. Fedorov, and A. S. Jensen. Layers
of cold dipolar molecules in the harmonic approximation. Eur. Phys.
J. D, 66(3), mar 2012.
[172] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein. Boseeinstein
condensation in trapped dipolar gases. Phys. Rev. Lett.,
85(9):1791–1794, aug 2000.
[173] P. G. Gennes and P. A. Pincus. Pair correlations in a ferromagnetic
colloid. Physik der Kondensierten Materie, 11(3):189–198, aug 1970.
[174] P I C Teixeira, J M Tavares, and M M Telo da Gama. The effect of
dipolar forces on the structure and thermodynamics of classical fluids.
Journal of Physics: Condensed Matter, 12(33):R411–R434, aug 2000.
[175] K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege, and A.P.
Philipse. Direct observation of dipolar chains in iron ferrofluids by
cryogenic electron microscopy. Nat Mater, 2(2):88–91, jan 2003.
[176] Anand Yethiraj and Alfons van Blaaderen. A colloidal model system
with an interaction tunable from hard sphere to soft and dipolar.
Nature, 421(6922):513–517, jan 2003.
[177] Mark Klokkenburg, Roel P. A. Dullens, Willem K. Kegel, Ben H.
Ern´e, and Albert P. Philipse. Quantitative real-space analysis of selfassembled
structures of magnetic dipolar colloids. Phys. Rev. Lett.,
96(3), jan 2006.
[178] N. T. Zinner, B. Wunsch, D. Pekker, and D.-W. Wang. BCS-BEC
crossover in bilayers of cold fermionic polar molecules. Physical Review
A, 85(1), jan 2012.
[179] Kaden R. A. Hazzard, Bryce Gadway, Michael Foss-Feig, Bo Yan,
Steven A. Moses, Jacob P. Covey, Norman Y. Yao, Mikhail D. Lukin,
Jun Ye, Deborah S. Jin, and Ana Maria Rey. Many-body dynamics of
dipolar molecules in an optical lattice. Phys. Rev. Lett., 113(19), nov
2014.
[180] B. I. Halperin and David R. Nelson. Theory of two-dimensional melting.
Phys. Rev. Lett., 41(2):121–124, jul 1978.
[181] David R. Nelson and B. I. Halperin. Dislocation-mediated melting in
two dimensions. Physical Review B, 19(5):2457–2484, mar 1979.
[182] A. P. Young. Melting and the vector coulomb gas in two dimensions.
Physical Review B, 19(4):1855–1866, feb 1979.
[183] Katherine J. Strandburg. Two-dimensional melting. Reviews of
Modern Physics, 60(1):161–207, jan 1988.
[184] Yi-Ya Tian and Daw-Wei Wang. Confinement-induced quantum melting
and polarization cooling for a 2d dipolar crystal. EPL, 91(6):66006,
sep 2010.
[185] Stefan S. Natu, Kaden R. A. Hazzard, and Erich J. Mueller. Local
versus global equilibration near the bosonic mott-insulator–superfluid
transition. Phys. Rev. Lett., 106(12), mar 2011.
[186] Sheng-Min Shih and Daw-WeiWang. Pseudopotential of an interaction
with a power-law decay in two-dimensional systems. Physical Review
A, 79(6), jun 2009.
[187] J. R. Armstrong, N. T. Zinner, D. V. Fedorov, and A. S. Jensen.
Bound states and universality in layers of cold polar molecules. EPL,
91(1):16001, jul 2010.
[188] Michael Klawunn, Alexander Pikovski, and Luis Santos. Twodimensional
scattering and bound states of polar molecules in bilayers.
Physical Review A, 82(4), oct 2010.
[189] R. Zimmermann, K. Kilimann, W. D. Kraeft, D. Kremp, and G. R¨opke.
Dynamical screening and self-energy of excitons in the electron–hole
plasma. Physica Status Solidi (b), 90(1):175–187, nov 1978.
[190] A. Forchel, B. Laurich, J. Wagner, W. Schmid, and T. L. Reinecke.
Systematics of electron-hole liquid condensation from studies of silicon
with varying uniaxial stress. Physical Review B, 25(4):2730–2747, feb
1982.
[191] R. Zimmermann and H. Stolz. The mass action law in two-component
fermi systems revisited excitons and electron-hole pairs. physica status
solidi (b), 131(1):151–164, sep 1985.
[192] S. Das Sarma and D. W. Wang. Many-body renormalization of semiconductor
quantum wire excitons: Absorption, gain, binding, and unbinding.
Phys. Rev. Lett., 84(9):2010–2013, feb 2000.
[193] A. J. Leggett. In modern trends in the theory of condensed matter (ed.
a. pekalski and j. przystawa). springer, berlin. 1980.
[194] P. Nozi`eres and S. Schmitt-Rink. Bose condensation in an attractive
fermion gas: From weak to strong coupling superconductivity. Journal
of Low Temperature Physics, 59(3-4):195–211, may 1985.
[195] Jan R. Engelbrecht, Mohit Randeria, and C. A. R. S´ade Melo.
BCS to bose crossover: Broken-symmetry state. Physical Review B,
55(22):15153–15156, jun 1997.
[196] Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of
ultracold atomic fermi gases. Reviews of Modern Physics, 80(4):1215–
1274, oct 2008.
[197] A. Pikovski, M. Klawunn, G. V. Shlyapnikov, and L. Santos. Interlayer
superfluidity in bilayer systems of fermionic polar molecules. Phys. Rev.
Lett., 105(21), nov 2010.
[198] J. Deiglmayr, A. Grochola, M. Repp, O. Dulieu, R. Wester, and
M. Weidem¨uller. Permanent dipole moment of LiCs in the ground
state. Physical Review A, 82(3), sep 2010.
[199] R K Kalia and P Vashishta. Interfacial colloidal crystals and melting
transition. J. Phys. C: Solid State Phys., 14(22):L643–L648, aug 1981.
[200] H. P. B¨uchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev,
G. Pupillo, and P. Zoller. Strongly correlated 2d quantum phases with
cold polar molecules: Controlling the shape of the interaction potential. Phys. Rev. Lett., 98(6), feb 2007.
[201] Mingwu Lu, Seo Ho Youn, and Benjamin L. Lev. Trapping ultracold dysprosium: A highly magnetic gas for dipolar physics. Phys. Rev. Lett., 104(6), feb 2010.
[202] Thilo St¨oferle, Henning Moritz, Christian Schori, Michael K¨ohl, and Tilman Esslinger. Transition from a strongly interacting 1d superfluid to a mott insulator. Phys. Rev. Lett., 92(13), mar 2004.
[203] Christian Schori, Thilo St¨oferle, Henning Moritz, Michael K¨ohl, and Tilman Esslinger. Excitations of a superfluid in a three-dimensional optical lattice. Phys. Rev. Lett., 93(24), dec 2004.
[204] J. T. Stewart, J. P. Gaebler, and D. S. Jin. Using photoemission spectroscopy to probe a strongly interacting fermi gas. Nature, 454(7205):744–747, aug 2008.
[205] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard, and W. Ketterle. Bragg spectroscopy of a bose-einstein condensate. Phys. Rev. Lett., 82(23):4569–4573, jun 1999.
[206] D. M. Stamper-Kurn, A. P. Chikkatur, A. G¨orlitz, S. Inouye, S. Gupta, D. E. Pritchard, and W. Ketterle. Excitation of phonons in a boseeinstein condensate by light scattering. Phys. Rev. Lett., 83(15):2876–2879, oct 1999.
[207] R. K. Pathria and P.D. Beale. Statistical mechanics 3rd edn (amsterdam: Elsevier). 2011.
[208] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang. Quantum spin hall insulator state in HgTe quantum wells. Science, 318(5851):766–770, nov 2007.
[209] Ivan Knez, Rui-Rui Du, and Gerard Sullivan. Evidence for helical edge modes in inverted InAs / GaSb quantum wells. Phys. Rev. Lett., 107(13), sep 2011.
[210] Jayakumar Balakrishnan, Gavin Kok Wai Koon, Manu Jaiswal, A. H. Castro Neto, and Barbaros ¨ Ozyilmaz. Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nature Physics, 9(5):284–287, mar 2013.
[211] Jun Hu, Jason Alicea, RuqianWu, and Marcel Franz. Giant topological insulator gap in graphene with 5 d adatoms. Phys. Rev. Lett., 109(26), dec 2012.
[212] Jayakumar Balakrishnan, Gavin Kok Wai Koon, Ahmet Avsar, Yuda Ho, Jong Hak Lee, Manu Jaiswal, Seung-Jae Baeck, Jong-Hyun Ahn, Aires Ferreira, Miguel A. Cazalilla, Antonio H. Castro Neto, and Barbaros¨ Ozyilmaz. Giant spin hall effect in graphene grown by chemical vapour deposition. Nat Comms, 5:4748, sep 2014.
[213] M. I. Katsnelson. Graphene: Carbon in two dimensions, cambridge university press (Cambridge, UK, 2012). 2012.
[214] Yuki Fuseya, Masao Ogata, and Hidetoshi Fukuyama. Interband contributions from the magnetic field on hall effects for dirac electrons in bismuth. Phys. Rev. Lett., 102(6), feb 2009.
[215] Zhenzhao Jia, Baoming Yan, Jingjing Niu, Qi Han, Rui Zhu, Dapeng Yu, and Xiaosong Wu. Transport study of graphene adsorbed with indium adatoms. Physical Review B, 91(8), feb 2015.
[216] D. Marchenko, A. Varykhalov, M.R. Scholz, G. Bihlmayer, E.I. Rashba, A. Rybkin, A.M. Shikin, and O. Rader. Giant rashba splitting in graphene due to hybridization with gold. Nat Comms, 3:1232, nov 2012.
[217] Fabian Calleja, H´ector Ochoa, Manuela Garnica, Sara Barja, Juan Jes´us Navarro, Andr´es Black, Mikhail M. Otrokov, Evgueni V. Chulkov, Andr´es Arnau, Amadeo L. V´azquez de Parga, Francisco Guinea, and Rodolfo Miranda. Spatial variation of a giant spin–orbit effect induces electron confinement in graphene on pb islands. Nature Physics, 11(1):43–47, dec 2014.
[218] D. M. Basko. Theory of resonant multiphonon raman scattering in graphene. Physical Review B, 78(12), sep 2008.
[219] F Guinea. Electron-phonon scattering in graphite intercalation compounds: a localised approach. J. Phys. C: Solid State Phys., 14(23):3345–3354, aug 1981.
[220] A. H. Castro Neto and Francisco Guinea. Electron-phonon coupling and raman spectroscopy in graphene. Physical Review B, 75(4), jan 2007.
[221] R. Ribeiro. private communication. 2013.
[222] Edward McCann and Vladimir I. Fal’ko. z → - z symmetry of spinorbit
coupling and weak localization in graphene. Phys. Rev. Lett., 108(16), apr 2012.
[223] H. Ochoa, A. H. Castro Neto, V. I. Fal’ko, and F. Guinea. Spin-orbit coupling assisted by flexural phonons in graphene. Physical Review B, 86(24), dec 2012.
[224] P. Coleman. Lecture notes introduction to many-body physics.
[225] K. Pi, Wei Han, K. M. McCreary, A. G. Swartz, Yan Li, and R. K. Kawakami. Manipulation of spin transport in graphene by surface
chemical doping. Phys. Rev. Lett., 104(18), may 2010.
[226] Paul Soul´e and M. Franz. Quasiparticle spectroscopy as a probe of the topological phase in graphene with heavy adatoms. Physical Review B, 89(20), may 2014.
[227] Hua Jiang, Zhenhua Qiao, Haiwen Liu, Junren Shi, and Qian Niu. Stabilizing topological phases in graphene via random adsorption. Phys.
Rev. Lett., 109(11), sep 2012.
[228] Alessandro Cresti, Dinh Van Tuan, David Soriano, Aron W. Cummings, and Stephan Roche. Multiple quantum phases in graphene with enhanced spin-orbit coupling: From the quantum spin hall regime to the spin hall effect and a robust metallic state. Phys. Rev. Lett., 113(24), dec 2014.
[229] Francisco Guinea and Bruno Uchoa. Odd-momentum pairing and superconductivity in vertical graphene heterostructures. Physical Review
B, 86(13), oct 2012.
[230] R. Rold´an, E. Cappelluti, and F. Guinea. Interactions and superconductivity in heavily doped MoS 2. Physical Review B, 88(5), aug 2013.
[231] Chien-Hung Lin, Yi-Ting Hsu, Hao Lee, and Daw-Wei Wang. Interaction-induced ferroelectricity in the rotational states of polar molecules. Physical Review A, 81(3), mar 2010.
[232] A. Micheli, G. Pupillo, H. P. B¨uchler, and P. Zoller. Cold polar molecules in two-dimensional traps: Tailoring interactions with external fields for novel quantum phases. Physical Review A, 76(4), oct 2007.
[233] J. J. Sakurai. Modern quantum mechanics.
[234] Bo Yan, Steven A. Moses, Bryce Gadway, Jacob P. Covey, Kaden R. A. Hazzard, Ana Maria Rey, Deborah S. Jin, and Jun Ye. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature, 501(7468):521–525, sep 2013.