研究生: |
洪雅鈺 |
---|---|
論文名稱: |
二氧化鈦光觸媒產氫之研究 |
指導教授: | 潘欽 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 二氧化鈦 、氫氣 |
外文關鍵詞: | TiO2, H2 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以溶膠凝膠法製備二氧化鈦光觸媒並使用含浸法擔載白金化合物於光觸媒表面,分別置入甲醇水溶液中以高壓汞燈照射,探討其產氫速率。
本研究結果顯示自製之二氧化鈦光觸媒以鍛燒溫度達300oC之TiO2_300產氫速率最高。本研究也發現以含浸法擔載白金化合物於光觸媒表面有助於電子電洞分離,因此可以提高產氫速率。
本研究亦通入氫氣鍛燒還原以含浸法擔載之白金氧化物光觸媒,實驗結果顯示P25以含浸法擔載白金再通以氫氣還原,產氫率提升為兩倍,以Pt/P25_200最高。
參考文獻
[1]A. Mills and S.L. Hunte, “An overview of semiconductor photoc-atalysis”, J. Photochem. Photobiol. A: Chem., 108 (1997) 1-35.
[2]M. Gratzel, “Photoelectrochemical cells”, Macmillan Magazines Ltd, Switzerland (2001) 338-344.
[3] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238 (1972) 37–8.
[4]A. Fujishima, N. R. Tata and A. D. Tryk, “Titanium dioxide ph-otocatalysis”, J. Photochem. Photobiol. C: Photochem., Rev. 1 (2000) 1–21.
[5]A. Kudo, H. Kato and I. Tsuji, “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, Chem. Lett, 33 (2004) 1534-1539.
[6]A. Kudo, “Photocatalyst materials for water splitting”, Catal. Sur-v. Asia, 7 (2003) 31-38.
[7]K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe and H. Arakawa, “Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system”, Chem. Phys. Lett., 277 (1997) 387-391.
[8]http://staff.aist.go.jp/nomura-k/common/STRUCIMAGES/Anatase.gif. ,2007,5月.
[9]http://staff.aist.go.jp/nomura-k/common/STRUCIMAGES/Rutile.gif. ,2007,5月.
[10]http://staff.aist.go.jp/nomura-k/common/STRUCIMAGES/TiO2-Brookite.gif.,2007,5.
[11]藤嶋昭、橋本和仁、渡部俊也,圖解光觸媒,世茂出版有限公司,台北縣新店市民生路19號5樓,2006,110-118。
[12]陳永芳,以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦,國立交通大學應用化學研究所博士論文,新竹市,2003。
[13]T. Mimani and C. K. Patil, “Solution combustion synthcsis of alumina powder”, Ame. Ceam. Soc. Bull., (2000) 3:63-67.
[14]G. Li and G.H. Wang. “Synthesis of nanometer-sized TiO2 partic-les by a microemulsion method”, Nanostr. Mater., 11 (1999) 663-668.
[15]C. Jeffrey and S. Wu, “A visible-light response vanadium-doped titania nanocatalyst by sol–gel method”, J. Photochem. Photobiol. A: Chem., 163 (2004) 509–515.
[16]陳建志,可見光應答型光觸媒製備及催化活性研究,國立清華大學化學與工程學研究所碩士論文,新竹市,2004.
[17]M. Anast, A. Jamting, J. M. Bell and B. Ben-Nissan, “Surface morphology examination of sol-gel deposited TiO2 films”, Solid Films, 253 (1994) 303-307.
[18]G. Wang, “Hydrothermal synthesis and photocatalytic activity ofnanocrystalline TiO2 powders in ethanol–water mixed solutions”,J. Mol. Catal. A: Chem., 274 (2007) 185–191.
[19]N. Meng, Michael and K.H. Leung, “A review and recent devel-opments in photocatalytic water-splitting using TiO2 for hydrog-en production”, Renw. Sust. Ener., Rev. 11 (2007) 401-425.
[20]A. Kudo, Catal.Surv. Asia, “Photocatalyst Materials for Water Spl-itting”, 7 (2003) 31.
[21]R. B. Gratian, T. Susumu and T. Nakamura, “Photoassisted hy-drogen production from a water-ethanol solution: a comparison of activities of Au---TiO2 and Pt---TiO2”, J. Photochem. Photo-biol. A: Chem., 89 (1995) 177-189.
[22]Y. Ikumaa and H. Bessho, “A composite visible-light photocatal-yst for hydrogen production”, J. Power Sour., 159 22 (2006) 1300-1304.
[23]T. Sreethawong and S. Yoshikawa, “Enhanced photocatalytic hy-drogen evolution over Pt supported on mesoporous TiO2 prepar-ed by single-step sol–gel process with surfactant template”, Int. J. Hydrogen Energy, 31 (2006) 786-796.
[24]N. L. Wu and M. S. Lee. “Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution”, Int.J. Hydrogen Energy, 29 (2004) 1601-1605.
[25]S. G. Lee, S. Lee and H. I. Lee. “The visible light induced photocatalytic activity of tungsten trioxide powders” Appl. Catal. A:, 207 (2001) 181–191.
[26]Y. Li, G. Lu and S. Li. “Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectro-scopy”, Chemosphere, 52 (2003) 843–850.
[27]J. S. Jang, S. M. Ji, S. W. Bae, H. C. Son and J. S. Lee, “ Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ ≥ 420 nm)”, J. Photochem. Phot-obiol. A: Chem., 188 (2007) 112–119.
[28]Y. Liu, L. Guo, W. Y. and H. Liu, “A composite visible-light photocatalyst for hydrogen production” J. Power Sour., 159 2 (2006) 1300-1304.
[29]C. Xing,Y. Zhang,W. Yan and L. Guo, “Band structure-controll-ed solid solution of Cd1-xZnxS photocatalyst for hydrogen produ-ction by water splitting”, Int. J. Hydrogen Energy, 31 (2006) 2018-2024.
[30]R. Abe, K. Sayama, K. Domen and H. Arakawa, “A new type of water splitting system composed of two different TiO2 photo-catalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator”, Chem. Phys. Lett., 344 (2001) 339-344.
[31]T. Sreethawong and S. Yoshikawa,“Enhanced photocatalytic hyd-rogen evolution over Pt supported on mesoporous TiO2 prepar-ed by single-step sol–gel process with surfactant template”, Int. J. Hydrogen Energy, 31 (2006) 786-796.
[32]K. Lee, W. S. Nam and G. Y. Han, “Photocatalytic water-split-ting in alkaline solution using redox mediator. 1:Parameter study”, Int. J. Hydrogen Energy, 29 (2004) 1343-1347.
[33]S. Sakthivel, M.V. Shankar, M. Palanichamy, B .Arabindoo, D. W. Bahnemann and V. Murugesan, “Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst”, Water Res., (2004) 38:3001-3008.
[34]K. Sayama and H. Arakawa, “Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semic-onductor catalysis”, J. Photochem Photobiol A: Chem., 77 (1994) 243-247.
[35]K. Sayama and H. Arakawa, “Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO2 catalyst”, J. Photochem. Photobiol. A: Chem., 94 (1996) 67–76.
[36]Arakawa H, Sayama K., “Oxide semiconductor materials for sol-arlight energy utilization”, Res Chem Intermed 26 (2000) 45–52.
[37]K. Sayama, H. Arakawa, “Solar hydrogen production: significanteffect of Na2CO3 addition on water splitting using simple oxidesemiconductor photocatalysts”, Catal. Surv. Jpn., 4 (2000) 75–80.
[38]H. Yang, L. J. Guo, W. Yan, H. Liu, “A novel composite phot-ocatalyst for water splitting hydrogen production”, J. Power Sour., 159 (2006) 1305-1309.
[39]M. Kitano, M. Takeuchi and M. Matsuoka, “Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts”, Catal. Today, 120 (2007) 133-138.
[40]Y.Z. Yang, C. H. Chang, H. Idriss, “Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M = Pd, Pt or Rh)”, Appl. Catal. B: Environmental, 67 (2006) 217–222.
[41]D. Jing, Y. Zhang, L. J. Guo, “Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydr-ogen evolution in aqueous methanol solution”, Chem. Phys. Lett., 415 (2005) 74–78.
[42]H. Kato and A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts”, Catal. Today, 78 (2003) 561–569.
[43]Z. Zou, J. Ye and H. Arakawa, “Photophysical and photocatalyt-ic properties of InMO4 (M = Nb5+, Ta5+) under visible light irradiation”, Mater. Res. Bull., 36 (2001) 1185-1193.
[44]H. Yang , L. J. Guo, W. Yan and H. Liu, “A novel composit-ephotocatalyst for water splitting hydrogen production”, J. Pow-er Sour., 159 (2006) 1305-1309.