簡易檢索 / 詳目顯示

研究生: 曹鈞勝
Tsao, Chun-Sheng
論文名稱: 黏彈材料受高頻諧和力作用之數位光彈應力分析
Digital photoelastic stress analysis of viscoelastic materials under high frequency harmonic force
指導教授: 王偉中
Wang, Wei-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 121
中文關鍵詞: 光彈法黏彈性力學光黏彈法高頻諧和力超音波有限單元法環氧樹脂
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於高分子材料的應用越來越廣,與黏彈性力學相關的問題也隨之浮現。光彈法雖已廣泛應用於求解工程構件受載荷時的內部應力,但若材料性質牽扯到時間與溫度的效應,光彈法則無法完全適用。本研究以數位光彈法,對自製之環氧樹脂試片在8個溫度點進行等應變率拉伸試驗,並使用時間-溫度重疊原理求得長時間範圍的光學主曲線,接著以波茲曼函數擬合實驗曲線而得其方程式,再代入光黏彈法理論,進而分析自製環氧樹脂構件在高頻諧和力負載下,隨時間變動的應力場。
    本研究使用數位光彈法及有限單元法軟體ANSYS探討不同形狀的構件,在不同頻率與不同振幅大小的高頻諧和力下所造成的應力場改變,構件內隨時間變化的溫度場也經由紅外線熱影像儀取得,最後將數值與實驗兩種結果相互驗證。


    一、簡介 1 二、文獻回顧 5 三、原理 8 3.1 線黏彈性材料在等溫條件下之力學關係 8 3.2 線黏彈性材料在等溫條件下之光學關係 10 3.3 時間-溫度重疊原理(Time-Temperature Superposition Principle)……………………….……….…………………….13 四、實驗裝置與試片規劃 16 4.1 實驗裝置 16 4.1.1 材料性質量測實驗之實驗裝置 16 4.1.2 超音波與光彈實驗之實驗裝置 18 4.1.3 紅外線熱像儀量測實驗之實驗裝置 19 4.2 試片規劃 20 4.2.1 熱膨脹實驗之試片規劃 20 4.2.2 拉伸與光彈實驗之試片規劃 20 4.2.3 蒲松氏比量測實驗之試片規劃 20 4.2.4 超音波與光彈實驗之試片規劃 21 五、實驗分析程序 22 5.1 材料性質之量測 22 5.1.1 熱膨脹係數 22 5.1.2 蒲松氏比 22 5.1.3 拉伸與光彈實驗 23 5.2 超音波與光彈實驗 24 5.3 紅外線熱像儀量測實驗 26 5.4 有限單元法分析 27 六、結果與討論 29 6.1 熱膨脹係數之量測結果 29 6.2 蒲松氏比之量測結果 30 6.3 拉伸與光彈實驗之結果 32 6.4 光學主曲線之建立 39 6.5 紅外線熱像儀實驗之結果 44 6.6 超音波與光彈實驗之結果 46 6.6.1 不同幾何形狀 47 6.6.2 不同頻率 49 6.6.3 不同振幅 50 6.7 有限單元法之分析結果 51 6.7.1 不同幾何形狀 52 6.7.2 不同頻率 54 6.7.3 不同振幅 54 七、結論與未來展望 56 7.1 結論 56 7.2 未來展望 57 八、參考文獻 59

    [1] S. C. Hunter, “The Rolling Contact of a Rigid Cylinder with a Viscoelastic Half Space,” Journal of Applied Mechanics, Vol. 28, No. 4, pp. 611-617, 1961.
    [2] L. W. Morland, “Exact Solutions for Rolling Contact between Viscoelastic Cylinders,” Q. J. Mech. Appl. Math., Vol. 20, Part 1, pp. 73-106, 1967.
    [3] C. Panek and J. J. Kalker, “Three-dimensional Contact of a Rigid Roller Traversing a Viscoelastic Half Space,” J. Appl. Math., Vol. 26, pp. 299-313, 1980.
    [4] I. G. Goriacheva, “ Contact Problem of Rolling of a Viscoelastic Cylinder on a Base of the Same Material,” PMM, Vol. 37, No. 5, pp. 925-933, 1973.
    [5] C. Papat and R. C. Batra, “Identification of a Viscoelastic Rubber Covered Roll by a Rigid Plane Surface,” Mechanics Research Communications, Vol. 9, pp. 265-278, 1982.
    [6] J. T. Oden and T. L. Lin, “On the General Rolling Contact Problem for Finite Deformations of a Viscoelastic Cylinder,” Comp. Math. Appl. Mech. Eng., Vol. 57, No. 3, pp. 297-367, 1986.
    [7] 劉柏彣, “構件在高頻諧和力作用下之數位光黏彈探討,” 國立清華大學動力機械工程學系碩士論文, 2008.
    [8] R. J. Arenz, C. W. Ferguson and M. L. Williams, “The Mechanical and Optical Characterization of a Solithane 113 Composition,” Experimental Mechanics, Vol. 7, No. 4, pp. 183-188, 1967.
    [9] R. D. Mindlin, “A Mathematical Theory of Photo-Viscoelasticity,” Journal of Applied Physics, Vol. 20, pp. 206-216, 1949.
    [10] W. T. Read, “Stress Analysis for Compressible Viscoelasticity Materials,” Journal of Applied Physics, Vol. 21, pp. 671-674, 1950.
    [11] E. H. Dill and C. Fowlkes, “Photoviscoelasticity,” NASA CR-444, 1966.
    [12] M. L. Williams and R. J. Arenz, “The Engineering Analysis of Linear Photoviscoelastic Materials,” Experimental Mechanics, Vol. 4, No. 9, pp. 249-262, 1964.
    [13] R. J. Arenz, C. W. Ferguson, T. Kunio and M. L. Williams, “The Mechanical and Optical Characterization of Hysol 8705 with Application to Photoviscoelastic Analysis,” Tech. Documentary Rpt No. WL TDR64-4, Air Force Weapons Lab, Kirtland AFB, 1964.
    [14] G. D. Shyu, A. I. Isayev and C. T. Li, “Photoviscoelastic Behavior of Amorphous Polymers during Transition from the Glassy to Rubbery State,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 39, pp. 2252-2262, 2001.
    [15] I. M. Daniel, “Experimental Methods for Dynamic Stress Analysis in Viscoelastic Materials,” Journal of Applied Physics, Vol. 32, pp. 598-606, 1965.
    [16] R. J. Arenz and U. Soltesz, “Time-dependent Optical Characterization in the Photoviscoelastic Study of Stress-wave Propagation,” Experimental Mechanics, Vol. 21, pp. 227-233, 1981.
    [17] Y. Miyano, M. Shimbo and T. Kunio, “Viscoelastic Analysis of Residual Stress in Quenched Thermosetting Resin Beams,” Experimental Mechanics, Vol. 22, No. 8, pp. 310-316, 1982.
    [18] S. Sugimori, Y. Miyano and T. Kunio, “Photoviscoelastic Analysis of Thermal Stress in a Quenched Epoxy Beam,” Experimental Mechanics, Vol. 24, No. 2, pp. 150-156, 1984.
    [19] H. Weber and A. Mai, “Photoviscoelasticity in the Case of Vibrational Loading,” Oiaz, Oesterreichische Ingenieur und Architekten Zeitschrift, Vol. 135, pp. 342-346, 1990.
    [20] Y. H. Zhao and J. Huang, “Photoviscoelastic Stress Analysis of a Plate with a Central Hole,” Experimental Mechanics, Vol. 41, No. 4, pp. 312-318, 2001.
    [21] S. Yoneyama, J. Gotoh and M. Takashi, “Tricolor Photoviscoelastic Technique and Its Application to Moving Contact,” Experimental Mechanics, Vol. 38, pp. 211-217, 1998.
    [22] S. Yoneyama, M. Takashi and J. Gotoh, “Photoviscoelastic Stress Analysis Near Contact Regions Under Complex Loads,” Mechanics of Time-dependent Materials, Vol. 1, pp. 51-65, 1997.
    [23] S. Yoneyama and M. Takashi, “A New Method for Photoelastic Fringe Analysis from a Single Image Using Elliptically Polarized White Light,” Optics and Lasers in Engineering, Vol. 30, pp. 441-459, 1998.
    [24] S. Yoneyama and M. Takashi, “Transient Stress Analysis Under Low Veolocity Impact by White Light Photoviscoelastic Technique,” IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, pp. 169-176, France, 2000.
    [25] K. Sakaue, Y. Uchiyama, H. Tanaka, S. Yoneyama and M. Takashi, ” Evaluation of Crack Tip Stress and Strain Fields under Nonproportional Loading in a Viscoelastic Material,” Journal of Engineering Fracture Mechanics, Vol. 75, pp. 4140-4150, 2008.
    [26] R. J. Kroll and C. A. Tatro, “ Stress-wave Propagation in Axially Symmetric Test Specimens,” Experimental Mechanics, Vol. 7, pp. 129-544, 1967.
    [27] N. P. Suh, “Stress-Wave Propagation in Truncated Cones Against a Rigid Wall,” Experimental Mechanics, Vol. 7, pp. 541-544, 1967.
    [28] H. Pih and L. S. Snyders, “Photoelastic Studies of Ultrasonics Waves in a Large Plate,” Experimental Mechanic, Vol. 9, pp. 186-192, 1969.
    [29] R. W. Mortimer, J. L. Rose and P. C. Chou, “Longitudinal Impact of Cylindrical Shells,” Experimental Mechanics, Vol. 11, pp. 25-31, 1971.
    [30] E. Wu, T. D. Tsai and C. S. Yen, “Two Methods for Determining Impact-force History on Elastic Plates,” Experimental Mechanics, Vol. 33, pp. 11-18, 1993.
    [31] W. Tong, “Pressure-shear Stress Wave Analysis in Plate Impact Experiments,” International Journal of Impact Engineering, Vol. 19, pp. 147-164, 1997.
    [32] E. Scarpetta and M. A. Sumbatyan, “On Wave Propagation in Elastic Solids with a Double Periodic Array of Crack,” Wave Motion, Vol. 25, pp. 61-72, 1997.
    [33] Y. C. Angel and A. Bolshakov, “In-plane Waves in an Elastic Solid Containing a Cracked Slab Region,” Wave Motion, Vol. 31, pp. 297-315, 2000.
    [34] F. Lanza di Scalea, M. Bonomo and D. Tuzzeo, “Ultrasonic Guided Wave Inspection of Bonded Lap Joints: Noncontact Method and Photoelastic Visualization,” Research in Nondestructive Evaluation, Vol. 13, pp. 153-171, 2001.
    [35] Y. H. Nam and S. S. Lee, “A Quantitative Evaluation of Elastic Wave in Solid by Stroboscopic Photoelasticity,” Journal of Sound and Vibration, Vol. 259, pp. 1199-1207, 2003.
    [36] 陳振宇, “超音波產生熱應力之探討,” 國立清華大學動力機械工程學系碩士論文, 2004.
    [37] 蔡英煌, “構件承受超音波及衝擊之動態應力分析,” 國立清華大學動力機械工程學系博士論文, 2007.
    [38] M. H. Sadd, “Elasticity,” Elsevier Butterworth-Heinemann, Massachusetts, U. S. A., 2005.
    [39] ANSYS User’s Manual for Revision 5.1, Swanson Analysis System, Inc., Houston, Pennsylvania, U. S. A., 1993.
    [40] Website:http://www.instron.com.tw/wa/home/default_zh_tw.aspx
    [41] Website:http://www.kyowa-ei.co.jp/english/index_e.htm
    [42] Website:http://www.yscco.com.tw/
    [43] Website:http://www.sony.com.tw/
    [44] Website:http://www.net-gmbh.com/
    [45] Website:http://sharplesstress.com/
    [46] Website:http://www.nec.com.tw/
    [47] ASTM Test Designation E831, “Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis,” Annual Book of ASTM Standards, Vol. 14.02, pp. 728-733, Philadelphia, 1984.
    [48] ASTM Test Designation B557M, “Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric),” Annual Book of ASTM Standards, Vol. 02.02, pp. 578-594, Philadelphia, 1984.
    [49] Website:http://www.yatm.com.tw/
    [50] Website:http://www.netzsch.com/index_e.html
    [51] Website:http://www.correlatedsolutions.com/
    [52] Website:http://www.letbond.com.cn/jianjie.htm
    [53] P. H. Mott, J. R. Dorgan and C. M. Roland, “The Bulk Modulus and Poisson’s Ratio of Incompressible Materials,” Journal of Sound and Vibration, Vol. 312, pp. 572-575, 2008.
    [54] 胡德, “高分子物理與機械性質”, 渤海堂, 台北市, 台灣, 1990.
    [55] Origin, Version7.0, Origin Lab Co., Massachusetts, U. S. A., 2002.
    [56] 邱皓政, “量化研究與統計分析-SPSS中文視窗版資料分析範例解析,” 五南, 台北市, 台灣, 2009.
    [57] Website:http://www.wolfram.com/
    [58] Y. Chen and H. Li, “Mechanism for Effect of Ultrasound on Polymer Melt in Extrusion,” Journal of Polymer Science. Part B. Polymer Physics, Vol. 45, pp. 1226-1233, 2007.
    [59] http://tw.myblog.yahoo.com/injection-injection/article?mid=9&sc=1
    [60] M. M. Frocht, “Photoelasticity,” John Wiley & Sons, Inc., New York, U. S. A., 1941.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE