研究生: |
曹鈞勝 Tsao, Chun-Sheng |
---|---|
論文名稱: |
黏彈材料受高頻諧和力作用之數位光彈應力分析 Digital photoelastic stress analysis of viscoelastic materials under high frequency harmonic force |
指導教授: |
王偉中
Wang, Wei-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 光彈法 、黏彈性力學 、光黏彈法 、高頻諧和力 、超音波 、有限單元法 、環氧樹脂 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於高分子材料的應用越來越廣,與黏彈性力學相關的問題也隨之浮現。光彈法雖已廣泛應用於求解工程構件受載荷時的內部應力,但若材料性質牽扯到時間與溫度的效應,光彈法則無法完全適用。本研究以數位光彈法,對自製之環氧樹脂試片在8個溫度點進行等應變率拉伸試驗,並使用時間-溫度重疊原理求得長時間範圍的光學主曲線,接著以波茲曼函數擬合實驗曲線而得其方程式,再代入光黏彈法理論,進而分析自製環氧樹脂構件在高頻諧和力負載下,隨時間變動的應力場。
本研究使用數位光彈法及有限單元法軟體ANSYS探討不同形狀的構件,在不同頻率與不同振幅大小的高頻諧和力下所造成的應力場改變,構件內隨時間變化的溫度場也經由紅外線熱影像儀取得,最後將數值與實驗兩種結果相互驗證。
[1] S. C. Hunter, “The Rolling Contact of a Rigid Cylinder with a Viscoelastic Half Space,” Journal of Applied Mechanics, Vol. 28, No. 4, pp. 611-617, 1961.
[2] L. W. Morland, “Exact Solutions for Rolling Contact between Viscoelastic Cylinders,” Q. J. Mech. Appl. Math., Vol. 20, Part 1, pp. 73-106, 1967.
[3] C. Panek and J. J. Kalker, “Three-dimensional Contact of a Rigid Roller Traversing a Viscoelastic Half Space,” J. Appl. Math., Vol. 26, pp. 299-313, 1980.
[4] I. G. Goriacheva, “ Contact Problem of Rolling of a Viscoelastic Cylinder on a Base of the Same Material,” PMM, Vol. 37, No. 5, pp. 925-933, 1973.
[5] C. Papat and R. C. Batra, “Identification of a Viscoelastic Rubber Covered Roll by a Rigid Plane Surface,” Mechanics Research Communications, Vol. 9, pp. 265-278, 1982.
[6] J. T. Oden and T. L. Lin, “On the General Rolling Contact Problem for Finite Deformations of a Viscoelastic Cylinder,” Comp. Math. Appl. Mech. Eng., Vol. 57, No. 3, pp. 297-367, 1986.
[7] 劉柏彣, “構件在高頻諧和力作用下之數位光黏彈探討,” 國立清華大學動力機械工程學系碩士論文, 2008.
[8] R. J. Arenz, C. W. Ferguson and M. L. Williams, “The Mechanical and Optical Characterization of a Solithane 113 Composition,” Experimental Mechanics, Vol. 7, No. 4, pp. 183-188, 1967.
[9] R. D. Mindlin, “A Mathematical Theory of Photo-Viscoelasticity,” Journal of Applied Physics, Vol. 20, pp. 206-216, 1949.
[10] W. T. Read, “Stress Analysis for Compressible Viscoelasticity Materials,” Journal of Applied Physics, Vol. 21, pp. 671-674, 1950.
[11] E. H. Dill and C. Fowlkes, “Photoviscoelasticity,” NASA CR-444, 1966.
[12] M. L. Williams and R. J. Arenz, “The Engineering Analysis of Linear Photoviscoelastic Materials,” Experimental Mechanics, Vol. 4, No. 9, pp. 249-262, 1964.
[13] R. J. Arenz, C. W. Ferguson, T. Kunio and M. L. Williams, “The Mechanical and Optical Characterization of Hysol 8705 with Application to Photoviscoelastic Analysis,” Tech. Documentary Rpt No. WL TDR64-4, Air Force Weapons Lab, Kirtland AFB, 1964.
[14] G. D. Shyu, A. I. Isayev and C. T. Li, “Photoviscoelastic Behavior of Amorphous Polymers during Transition from the Glassy to Rubbery State,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 39, pp. 2252-2262, 2001.
[15] I. M. Daniel, “Experimental Methods for Dynamic Stress Analysis in Viscoelastic Materials,” Journal of Applied Physics, Vol. 32, pp. 598-606, 1965.
[16] R. J. Arenz and U. Soltesz, “Time-dependent Optical Characterization in the Photoviscoelastic Study of Stress-wave Propagation,” Experimental Mechanics, Vol. 21, pp. 227-233, 1981.
[17] Y. Miyano, M. Shimbo and T. Kunio, “Viscoelastic Analysis of Residual Stress in Quenched Thermosetting Resin Beams,” Experimental Mechanics, Vol. 22, No. 8, pp. 310-316, 1982.
[18] S. Sugimori, Y. Miyano and T. Kunio, “Photoviscoelastic Analysis of Thermal Stress in a Quenched Epoxy Beam,” Experimental Mechanics, Vol. 24, No. 2, pp. 150-156, 1984.
[19] H. Weber and A. Mai, “Photoviscoelasticity in the Case of Vibrational Loading,” Oiaz, Oesterreichische Ingenieur und Architekten Zeitschrift, Vol. 135, pp. 342-346, 1990.
[20] Y. H. Zhao and J. Huang, “Photoviscoelastic Stress Analysis of a Plate with a Central Hole,” Experimental Mechanics, Vol. 41, No. 4, pp. 312-318, 2001.
[21] S. Yoneyama, J. Gotoh and M. Takashi, “Tricolor Photoviscoelastic Technique and Its Application to Moving Contact,” Experimental Mechanics, Vol. 38, pp. 211-217, 1998.
[22] S. Yoneyama, M. Takashi and J. Gotoh, “Photoviscoelastic Stress Analysis Near Contact Regions Under Complex Loads,” Mechanics of Time-dependent Materials, Vol. 1, pp. 51-65, 1997.
[23] S. Yoneyama and M. Takashi, “A New Method for Photoelastic Fringe Analysis from a Single Image Using Elliptically Polarized White Light,” Optics and Lasers in Engineering, Vol. 30, pp. 441-459, 1998.
[24] S. Yoneyama and M. Takashi, “Transient Stress Analysis Under Low Veolocity Impact by White Light Photoviscoelastic Technique,” IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, pp. 169-176, France, 2000.
[25] K. Sakaue, Y. Uchiyama, H. Tanaka, S. Yoneyama and M. Takashi, ” Evaluation of Crack Tip Stress and Strain Fields under Nonproportional Loading in a Viscoelastic Material,” Journal of Engineering Fracture Mechanics, Vol. 75, pp. 4140-4150, 2008.
[26] R. J. Kroll and C. A. Tatro, “ Stress-wave Propagation in Axially Symmetric Test Specimens,” Experimental Mechanics, Vol. 7, pp. 129-544, 1967.
[27] N. P. Suh, “Stress-Wave Propagation in Truncated Cones Against a Rigid Wall,” Experimental Mechanics, Vol. 7, pp. 541-544, 1967.
[28] H. Pih and L. S. Snyders, “Photoelastic Studies of Ultrasonics Waves in a Large Plate,” Experimental Mechanic, Vol. 9, pp. 186-192, 1969.
[29] R. W. Mortimer, J. L. Rose and P. C. Chou, “Longitudinal Impact of Cylindrical Shells,” Experimental Mechanics, Vol. 11, pp. 25-31, 1971.
[30] E. Wu, T. D. Tsai and C. S. Yen, “Two Methods for Determining Impact-force History on Elastic Plates,” Experimental Mechanics, Vol. 33, pp. 11-18, 1993.
[31] W. Tong, “Pressure-shear Stress Wave Analysis in Plate Impact Experiments,” International Journal of Impact Engineering, Vol. 19, pp. 147-164, 1997.
[32] E. Scarpetta and M. A. Sumbatyan, “On Wave Propagation in Elastic Solids with a Double Periodic Array of Crack,” Wave Motion, Vol. 25, pp. 61-72, 1997.
[33] Y. C. Angel and A. Bolshakov, “In-plane Waves in an Elastic Solid Containing a Cracked Slab Region,” Wave Motion, Vol. 31, pp. 297-315, 2000.
[34] F. Lanza di Scalea, M. Bonomo and D. Tuzzeo, “Ultrasonic Guided Wave Inspection of Bonded Lap Joints: Noncontact Method and Photoelastic Visualization,” Research in Nondestructive Evaluation, Vol. 13, pp. 153-171, 2001.
[35] Y. H. Nam and S. S. Lee, “A Quantitative Evaluation of Elastic Wave in Solid by Stroboscopic Photoelasticity,” Journal of Sound and Vibration, Vol. 259, pp. 1199-1207, 2003.
[36] 陳振宇, “超音波產生熱應力之探討,” 國立清華大學動力機械工程學系碩士論文, 2004.
[37] 蔡英煌, “構件承受超音波及衝擊之動態應力分析,” 國立清華大學動力機械工程學系博士論文, 2007.
[38] M. H. Sadd, “Elasticity,” Elsevier Butterworth-Heinemann, Massachusetts, U. S. A., 2005.
[39] ANSYS User’s Manual for Revision 5.1, Swanson Analysis System, Inc., Houston, Pennsylvania, U. S. A., 1993.
[40] Website:http://www.instron.com.tw/wa/home/default_zh_tw.aspx
[41] Website:http://www.kyowa-ei.co.jp/english/index_e.htm
[42] Website:http://www.yscco.com.tw/
[43] Website:http://www.sony.com.tw/
[44] Website:http://www.net-gmbh.com/
[45] Website:http://sharplesstress.com/
[46] Website:http://www.nec.com.tw/
[47] ASTM Test Designation E831, “Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis,” Annual Book of ASTM Standards, Vol. 14.02, pp. 728-733, Philadelphia, 1984.
[48] ASTM Test Designation B557M, “Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric),” Annual Book of ASTM Standards, Vol. 02.02, pp. 578-594, Philadelphia, 1984.
[49] Website:http://www.yatm.com.tw/
[50] Website:http://www.netzsch.com/index_e.html
[51] Website:http://www.correlatedsolutions.com/
[52] Website:http://www.letbond.com.cn/jianjie.htm
[53] P. H. Mott, J. R. Dorgan and C. M. Roland, “The Bulk Modulus and Poisson’s Ratio of Incompressible Materials,” Journal of Sound and Vibration, Vol. 312, pp. 572-575, 2008.
[54] 胡德, “高分子物理與機械性質”, 渤海堂, 台北市, 台灣, 1990.
[55] Origin, Version7.0, Origin Lab Co., Massachusetts, U. S. A., 2002.
[56] 邱皓政, “量化研究與統計分析-SPSS中文視窗版資料分析範例解析,” 五南, 台北市, 台灣, 2009.
[57] Website:http://www.wolfram.com/
[58] Y. Chen and H. Li, “Mechanism for Effect of Ultrasound on Polymer Melt in Extrusion,” Journal of Polymer Science. Part B. Polymer Physics, Vol. 45, pp. 1226-1233, 2007.
[59] http://tw.myblog.yahoo.com/injection-injection/article?mid=9&sc=1
[60] M. M. Frocht, “Photoelasticity,” John Wiley & Sons, Inc., New York, U. S. A., 1941.