研究生: |
沈林弘 Shen, Lin-hong |
---|---|
論文名稱: |
一些特殊退化二次橢圓算子的勻質化問題與計算 Homogenization of some special degenerate second order linear elliptic operators and its numerical computation |
指導教授: |
朱家杰
Chu, Chia-chieh |
口試委員: |
王偉成
Wei-Cheng Wang 張書銘 Shu-Ming Chang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 27 |
中文關鍵詞: | 勻質化 、退化橢圓方程 、漸進行為 、數值分析 |
外文關鍵詞: | homogenization, degenerate elliptic equation, asymptotic behaviour, numerical analysis |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們在這篇論文中討論了一些特殊退化二次橢圓算子的勻質化問題, 並利用有限元素法做了幾個數值上的計算
Abstract
Homogenization of some special degenerate second order linear elliptic operators and its numerical computation
Lin-Hong Shen, Avisor:Assistant Professor Chia-Chieh Chu
Department of Mathematics
National Tsing Hua University, Hsin-Chu City,Taiwan
In many area, homogenization is an alternative way to find out the asymptotic behaviour of partial differential equation. This arti- cle is about homogenization process of degenerate second order linear elliptic operators. In this article, we give both theoretical and com- putational analysis to the asymptotic behaviour of the solution of the equation.
−div(a( x )Duh) = f on Ω ,
uh |∂Ω= 0 on ∂Ω ,
when Eh tends to zero, where aij (x) is Y -periodic, nonnegative defi- nite for almost every x in domain Ω and vanishes at some points in Ω. We find out that the homogenization process of degenerate ellip- tic equation in rectangle domain is still available for some particular coefficient functions with its inverse is integrable
Key words: homogenization, degenerate elliptic equation, asymp- totic behaviour, numerical analysis
References
[AF03] Robert A. Adams and John J.F. Fournier. Sobolev spaces. Academic Press, second edition, 2003.
[BLP78] A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic anal- ysis for periodic structures. AMS Chelsea Publishing, Providence, RI, 1978.
[BS08] Susanne C. Brenner and L.Ridgway Scott. The mathematical theory of the finite element methods. Springer, 2008.
[Cav02] Albo Carlos Cavalheiro. An approximation theorem for solutions of degenerate elliptic equations. Proc. Edinb. Math. Soc. (2), 45:363– 389, 2002.
[Def93] Anneliese. Defranceschi. An introduction to homogenization and g-convergence. Technical report, ICTP, September 1993.
[FKS82] E. Fabes, C. Kenig, and R. Serapioni. The local regularity of so- lutions of degenerate elliptic equations. Communication in PDEs, 7(1):77–116, 1982.
[GT77] D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 1977.
[GU09] V. Gol’dshtein and A. Ukhlov. Weighted sobolev space and embed- ding theorems. Transactions of the American Mathematical Society, 361(7):3829–3850, 2009.
[Kuf85] Alois. Kufner. weighted Sobolev Spaces. A Wiley-Interscience Pub- lication. John Wiley & Sons, Inc., New York, 1985.
26
[PS08] Grigorios A. Pavliotis and Andrew M. Stuart. Multiscale Methods, volume 53 of Texts in Applied Mathematics. Springer, New York, 2008.
[To¨l12] Jonas M. To¨lle. Uniqueness of weighted sobolev spaces with weakly differentiable weights. Journal of Functional Analysis, 263(10):3195–3223, 2012.