簡易檢索 / 詳目顯示

研究生: 謝宗良
論文名稱: 汽輪機發電機與冷卻水塔最佳化操作
Optimal operation of turbine generator and cooling tower
指導教授: 鄭西顯
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 56
中文關鍵詞: 汽輪發電機冷卻水塔最佳化
外文關鍵詞: turbine generator, cooling tower, Optimal
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我國汽輪發電機與冷卻水塔使用情形非常普遍,一般化學工業或能源產業皆屬常見設備,但深入探討研究此系統的相關文獻並不多見,因此本研究結果將可對包含此類設備之工廠進行推廣,以達到節能與提高效益目標。先利用逐步回歸分析挑選影響汽輪發電機效率的重要變數,並同時考慮模型中固定變數的選擇,進一步建立多模型描述汽輪發電機效率;冷卻水塔部分則利用所量測數據直接進行出口水溫的多模型建立,最後利用汽輪發電機與冷卻水塔模型執行最佳化操作,而增加整體淨發電功率。


    第一章、 緒論 1 1-1、 前言 1 1-2、 研究動機 1 1-3、 文獻回顧 2 第二章、 汽輪發電機與冷卻水塔系統 5 2-1、 系統簡介 5 2-2、 汽輪發電機(TURBINE GENERATOR) 6 2-3、 冷卻水塔(COOLING TOWER) 7 第三章、 研究方法 10 3-1、 汽輪發電機模型 10 3-2、 冷卻水塔模型 13 3-3、 逐步回歸 15 3-3-1、 向前選取法 15 3-3-2、 後退淘汰法 16 3-3-3、 逐步選取法 17 3-4、 多模型建模 18 3-4-1、 多模型描述 19 3-4-2、 模糊c-Mean分群法(FCM, Fuzzy c-Mean) 19 3-4-3、 滿意模糊c-Mean分群法 20 3-4-4、 局部模型參數辨識 21 3-4-5、 基於局部性能指標的多模型辨識演算法 21 3-4-6、 多模型離線建模方法 22 3-5、 目標函數與最佳化流程 25 第四章、 結果 26 4-1、 汽輪發電機效率模型建立 26 4-1-1、 逐步回歸法挑選汽輪發電機效率之重要變數結果 26 4-1-2、 汽輪發電機效率多模型建立結果 34 4-2、 冷卻水塔出口水溫模型建立 43 4-3、 系統最佳化結果 47 第五章、 結論 52 第六章、 參考文獻 53

    [1]Rhodes, N., Else, K., Predicting the performance of water and air cooled condensers, The International Journal of Pressure Vessels and Piping, vol. 66, 1996, pp.99-112.
    [2]Wright, J. S., Steam turbine cycle optimization, evaluation, and performance testing considerations”, GE Power Systems, Schenctady, NY, 1996, pp.11-12.
    [3]Ga□□n, J., Rahman Al-Kassir, A., Gonz□lez, J.F., Macı́as, A., Diaz, M.A., Influence of the cooling circulation water on the efficiency of a thermonuclear plant, Applied Thermal Engineering, vol. 25, 2005, pp.485-494.
    [4]Chuang, C. C., Sue, D. C, Performance effects of combined cycle power plant with variable condenser pressure and loading, Energy, vol. 30, 2005, pp.1793-1801.
    [5]Huang, Z., Edwards, R. M., Power generation efficiency improvement through auxiliary system modifications, IEEE TRANSACTIONS ON ENERGY CONVERSION, vol. 18, 2003, pp.525-529.
    [6]Merkel, F., Verdunstungsk□hlung, VDI-Zeitchrift, vol. 70, 1925, pp.123-128.
    [7]Jaber, H., Webb, R. L., Design of cooling towers by the effectiveness-NTU method, ASME J. Heat Transfer, vol. 111, 1989, pp.837-843.
    [8]Stoecker, W. F., Procedures for simulating the performance of components and systems for energy calculations, Atlanta: ASHRAE, 1976.
    [9]Braun, J. E., Klein, S. A, Mitchell, J. W., Effectiveness models for cooling towers and cooling coils, ASHRAE Trans, vol. 95, 1989, pp.164-174.
    [10]S□ylemez, M. S., On the optimum performance of forced draft counter flow cooling towers, Energy Conversion and Management, vol. 45, 2004, pp.2335-2341.
    [11]Kloppers, J. C., Kr□ger, D. G., Cooling tower performance evaluation: Merkel, Poppe, and e-NTU methods of analysis, Journal of Engineering for Gas Turbines and Power, vol. 127, 2005, pp.1-7.
    [12]Jin, G. Y. , Cai, W. J., Lu, L., Lee, E. L., Chiang, A., A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems, Energy Conversion and Management, vol. 48, 2007, pp.355-365.
    [13]Qi, X., Liu, Z. Y., Further investigation on the performance of a shower cooling tower”, Energy Conversion and Management, vol. 49, 2008, pp.570-577.
    [14]Wang S.W., Xu X. H., Effects of alternative control strategies of water-evaporative cooling systems on energy efficiency and plume control: A case study, Building and Environment, vol. 43, 2008, pp.1973-1989.
    [15]Yu, F.W., Chan, K.T., Optimization of water-cooled chiller system with load-based speed control, Applied Energy, vol. 85, 2008, pp.931-950.
    [16]Zheng, G. R., Zaheer-uddin, M., Optimization of thermal processes in a variable air volume HVAC system, Fuel and Energy Abstracts, vol. 21, 1996, pp.407-420.
    [17]Jian, W. L., Zaheeruddin, M., Sub-optimal on–off switching control strategies for chilled water cooling systems with storage, Applied Thermal Engineering, vol. 18, 1998, pp. 369-386.
    [18]Lu, L., Cai, W. J., Soh, Y. C., Xie, L., Li, S., HVAC system optimization – condenser water loop, Energy Conversion and Management, vol. 45, 2004, pp.613-630.
    [19]Salsbury, T., Diamond, R., Performance validation and energy analysis of HVAC systems using simulation, Energy and Buildings, vol. 32, 2000, pp.5-17.
    [20]Ahn, B. C., Mitchell, J. W., Optimal control development for chilled water plants using a quadratic representation, Energy and Buildings, vol. 33, 2001, pp.371-378.
    [21]Song, Y. H., Akashi, Y., Yee, J. J., Energy performance of a cooling plant system using the inverter chiller for industrial building, Energy and Buildings, vol. 39, 2007, pp.289-297.
    [22]Huang, W., Lam, H. N., Using genetic algorithms to optimize controller parameters for HVAC systems, Energy and Buildings, vol. 26, 1997, pp.277-282.
    [23]Chow, T. T., Zhang, G. Q., Lin, Z., Song, C. L., Global optimization of absorption chiller system by genetic algorithm and neural network, Energy and Buildings, vol. 34, 2002, pp.103-109.
    [24]Chang, Y. C., Sequencing of chillers by estimating chiller power consumption using artificial neural networks, Building and Environment, vol. 42, 2007, pp.180-188.
    [25]Braun, J. E., Diderrich, G. T., Near-optimal control of cooling towers for chilled-water systems, ASHRAE Transactions, vol. 96, 1990, pp.806-813.
    [26]Stout Jr., M. R., Leach, J. W., Cooling tower fan control for energy efficient, Energy Engineering, vol. 99, 2002, pp.7-31
    [27]Cassidy, M. P., Stack, J. F., Applying adjustable speed AC drives to cooling tower fans”, IEEE, 1988, pp.87-90.
    [28]Mandi, R.P., Hegde, R.K., Sinha, S.N., Performance enhancement of cooling towers in thermal power plants through energy conservation, IEEE Thermal Power Plants through Energy. Conservation, 2005, pp.1-6.
    [29]DeVilliers, A., Bosman, P., Optimizing turbine cycle heat rate against cooling tower operations, proceedings of the American power conference, vol. 61-2, 1999, pp.856-861.
    [30]Castro, M. M., Song, T. W., Pinto, J. M., Minimization of operational costs in cooling water systems, Chemical engineering research & design, vol. 78, 2000, pp.192-201.
    [31]McCabe, W. L., Smith, J. C., Harriott, P., Unit operations of chemical engineering(6th edition), McGraw-Hill, New York, 2004, pp.596-621.
    [32]Welty, J. R., Wicks, C. E., Wilson, R. E., Rorrer, G., Fundamentals of momentum, heat, and mass transfer, John Wiley & Sons, New York, 2000.
    [33]Montgomery, D.C., Peck, E.A., Vining, G.G., Introduction to linear regression analysis. (3rd edition), John Wiley & Sons, New York, 2001.
    [34]Murry-Smith, R., Johansen, T.A., Multiple model approaches to modeling and control, Taylor and Francis, London, 1997, pp. 293-306.
    [35]Gregorc ̌ic ̌, G., Lightbody, G., Local model network identification with Gaussian process, IEEE Transactions on Neural Networks, vol.18, 2007, pp.1404-1423.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE