簡易檢索 / 詳目顯示

研究生: 陳樂凡
論文名稱: 利用多片熔融矽石產生短波長連續頻譜
Generation of intense broadband short wavelength continuum based on multiple plates of fused silica
指導教授: 孔慶昌
口試委員: 項維巍
陳明彰
楊尚達
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 47
中文關鍵詞: 二倍頻展頻
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如要產生接近原秒範圍的脈衝,則靠近UV的短波長連續頻譜將變得不可或缺。因固體的色散效應較強與較低的損壞閾值,過往實驗都是利用氣體展頻達到此目標,例如使用Ti:sapphire雷射聚焦於充滿惰性氣體的中空波導,產生光束絲和四波混頻。最近本實驗室發現利用幾片晶體產生連續反應,即可產生不錯的展頻成果,此論文即利用此方法在近UV光波段處產生連續頻譜。
    內文將先對現今常用的展頻實驗做個回顧,並稍微提到本實驗參考的展頻架構,接著簡介實驗中會用到的理論。因本實驗為利用BBO產生的二倍頻做為展頻光源,而光源能量影響著展頻效果,因此二倍頻的轉換效率理論將會是除了展頻機制的另一重點。實驗部分將分為二倍頻轉換、展頻實驗、脈衝壓縮模擬三部分架構分別介紹,而實驗結果的量測分析與未來計畫則呈現在第四章節。
    目前實驗結果為可將原395 nm的脈衝光利用多片晶體展頻至320~480 nm,轉換極限約4 fs的連續頻譜。比起過去研究,本實驗的精小、簡單以及高能量容忍度將會引發大家對於固體在UV部分展頻的新興趣。


    Production of single-cycle to subcycle optical transients in the attosecond regime requires coherent pulses that have a continuous spectrum covering the blue to uv region. Such blue to uv pulses have been generated through filamentation and four-wave mixing by focusing intense 800 nm pulses from Ti:sapphire lasers in inert gases confined in hollow waveguides. The use of solid material for the same purpose was not attractive because of large dispersion and low damage threshold. Recently we demonstrated that a similarly broad and intense visible continuum can be generated by strategically placing several thin fused silica plates at or near the focus of the laser beam.
    In this thesis we provide first a review of papers that describe the generation of coherent broadband spectrum over the past few years. Then we introduce the basic principle of the generation scheme used in experiment. Because broadband spectrum generation in our scheme is affected by the power of the 395 nm light, the second harmonic generation (SHG) conversion efficiency is of importance in this thesis and is included in the description. The experimental results of SHG, broadband generation, and pulse compression are then described. Analysis of the results and a brief future plan is shown in the final chapter.
    So far, we generated a spectrum with a bandwidth covering 320 nm to 480 nm using multiple plates of fused silica. This spectral width can support a transform limited 4 fs. The smaller, simpler setup and higher damage threshold will trigger new interest in the use of bulk material for supercontinuum generation in the uv.

    摘要 1 Abstract 2 致謝 3 目錄 5 附圖目錄 7 第一章 緒論 9 1.1 超快雷射發展與動機 9 1.2 文獻回顧 11 第二章 理論介紹 14 2.1 非線性光學 15 2.2 雙折射(Birefringence) 19 2.2.1 雙折射相位匹配 20 2.2.2 相位匹配頻寬(Phase Matching Bandwidth, PMB) 22 2.3 自我相位調變(Self-phase modulation, SPM) 23 2.4 群速度色散(Group Velocity Dispersion, GVD) 25 2.5 色散補償(Dispersion compensation) 26 第三章 二倍頻實驗 28 3.1 二倍頻效率模擬 28 3.2 BBO晶體長度與縮束倍率選擇 29 3.3 實驗架構 30 3.4 實驗結果與分析 32 第四章 展頻實驗 33 4.1 實驗架構 33 4.2 展頻光啁啾的選擇 34 4.3 展頻結果與分析 35 4.4 SD-FROG量測 39 4.5 同調性量測 41 4.6 脈衝壓縮模擬 43 第五章 結論與未來展望 45 參考文獻 46

    [1] T. H. Maiman, “Stimulated Optical Emission in Ruby,” Journal of the Optical Society of America, Vol. 50, 1134-1134 (1960).
    [2] M. Nisoli, S. De Silvestri, O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [3] T. Brabec, F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [4] F. Krausz, M. Ivanov, “Attosecond Physics,” Rev. Mod. Phys. 81, 163–234 (2009).
    [5] M. Uiberacker, et al. “Attosecond real-time observation of electron tunneling in atoms,” Nature 446, 627–632 (2007)
    [6] R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
    [7] R. R. Alfano and S. L. Shapiro, “Direct distortion of electronic clouds of rare-gas atoms in intense electric fields,” Phys. Rev. Lett. 24, 1217–1220 (1970).
    [8] R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. Vol. 8, No. 1, 1-3 (1983).
    [9] L. Misoguti, S. Backus, “Generation of Broadband VUV Light Using Third-Order Cascaded Processes,” Phys. Rev. Lett. Vol. 87, No. 1 (2001).
    [10] Takao Fuji, Takuya Horio, “Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett. Vol. 32, No. 17, 2481-2483 (2007).
    [11] M. Zhi and A. V. Sokolov, “Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses,” New J. Phys. 10, 025032 (2008).
    [12] Chih-Hsuan Lu et. al., “A new and improved approach to supercontinuum generation in solids,” paper STh1E.6, CLEO 2014, June 8-13 (2014).
    [13] P. A. Franken, “Generation of optical harmonics,” Phys. Rev. Lett. Vol. 7, No. 4 (1961).
    [14] R. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics”, 2007.
    [15] E.G. Sauter, “Nonlinear Optics”, 1996.
    [16] Andrew M. Weiner, “Ultrafast Optics”, 2009.
    [17] Haifeng Wang, Andrew M. Weiner, “Efficiency of Short-Pulse Type-I Second-Harmonic Generation With Simultaneous Spatial Walk-Off, Temporal Walk-Off, and Pump Depletion,” IEEE J. Quant. Electron. Vol. 39, No.12, 1600-1618 (2003)
    [18] Vitaly Krylov, Alexander Rebane, “Second-harmonic generation of amplified femtosecond Ti:sapphire laser pulses,” Opt. Lett. Vol. 20, No. 2 (1995).
    [19] Raoul Zerne, Carlo Altucci, “Phase-Locked High-Order Harmonic Sources,” Phys. Rev. Lett. Vol. 79, No. 6 (1997)
    [20] M. Bellini, C. Lyngå, “Temporal Coherence of Ultrashort High-Order Harmonic Pulses,” Phys. Rev. Lett. Vol. 81, No. 2 (1998)
    [21] R. L. Fork, “Negative dispersion using pairs of prism,” Opt. Lett. Vol. 9, No. 5 (1984).
    [22] Sterling Backus et. Al., “High power ultrafast lasers,” Rev. Sci. Instrum., Vol. 69, No. 3 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE