研究生: |
陳彥良 Chen, Yen-Liang |
---|---|
論文名稱: |
含奈米二氧化矽與奈米碳管之環氧樹脂複合材料製備與機械性質研究 Preparation and Mechanical Properties of Epoxy Composites with Nano Silica and Carbon Nanotube |
指導教授: |
葉孟考
Yeh, Meng-Kao 戴念華 Tai, Nyan-Hwa |
口試委員: |
蔣長榮
Chiang, Chun-Ron 林明泉 Lin, Ming-Chyuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 環氧樹脂 、奈米複合材料 、機械性質 、奈米二氧化矽 、奈米碳管 |
外文關鍵詞: | epoxy, Nanocomposites, Mechanical properties, Nano-silica, Carbon Nanotube |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在各個領域常見的高分子聚合物,在工業上可取代部分金屬材料,於電子工業領域,可保護與定位脆弱的矽晶片。本文首先研究目前最常用在電子封裝之高分子材料,以環氧樹脂為基材,搭配補強材奈米二氧化矽,探討奈米二氧化矽/環氧樹脂複合材料於不同填充比重對複合材料機械性質之影響。接著考慮到電子封裝可能會有靜電上的問題,本文利用補強材奈米碳管作為降低表面阻抗的材料,與奈米二氧化矽搭配,製成奈米二氧化矽/奈米碳管/環氧樹脂複合材料。
實驗部分先確定奈米二氧化矽/環氧樹脂複合材料與奈米碳管/環氧樹脂複合材料之製程,並比較不同重量百分比在機械性質與表面阻抗的影響,再確定奈米二氧化矽/奈米碳管/環氧樹脂複合材料之製程,並比較與前者在機械性質與表面阻抗的變化。實驗結果顯示0.1 wt%奈米二氧化矽/環氧樹脂複合材料相對於純環氧樹脂更具延展性。添加奈米二氧化矽能增加抗壓縮的效果,以5 wt%奈米二氧化矽/環氧樹脂複合材料為例,在撓曲模數有9.83 %的提升。添加奈米碳管能提升拉伸性質,以0.5 wt%奈米碳管/環氧樹脂複合材料為例,在楊氏模數有18.37 %的提升。加入奈米碳管確實能降低奈米複合材料表面阻抗,其中0.1 wt%和2 wt%的奈米二氧化矽/奈米碳管/環氧樹脂複合材料皆達到靜電消散的功能。從FESEM圖中可發現奈米二氧化矽於5 wt%時分散性優於低重量百分比;奈米碳管在1 wt%奈米二氧化矽/奈米碳管/環氧樹脂複合材料時分散性較佳。
Polymers are commonly used in various fields of industry to partly replace metal materials. In the electronics industry, polymers can protect and keep fragile silicon wafers in position. In this study, epoxy is used as substrate materials as commonly used in electronic packaging, and nano-silica with different weight percentages are added as reinforcing material and the mechanical properties of nano-silica/epoxy composites are investigated first. After considering the additional electrostatic problem in packaging, carbon nanotubes are added to reduce the surface resistance of nano-silica/carbon nanotube/epoxy composites.
Nano-silica/epoxy composites, carbon nanotube/epoxy composites and nano-silica/carbon nanotube/epoxy composites were prepared and their mechanical properties and surface resistance with different weight percentages are studied. It is found that the composites with 0.1 wt% nano-silica are more ductile than pure epoxy. Nano-silica can increase the ability of composites against compression; the composites with 5.0 wt% nano-silica increase its flexural modulus 9.83%. Carbon nanotubes can improve the tensile properties of composites; the Young's modulus of the composites with 0.5 wt% carbon nanotubes increase 18.37%. Carbon nanotubes can reduce the surface resistance of nanocomposites. The results show that the composites with 0.1 wt% and 2.0 wt% of nano-silica and carbon nanotubes achieve the property of electrostatic dissipation. The FESEM shows that the dispersion of 5.0 wt% nano-silica in composites is better than those having lower weight percentage of nano-silica. The carbon nanotubes have better dispersion in 1.0 wt% nano-silica/carbon nanotube/epoxy composites.
[1] I. Zaman, T.T. Phan, H.C. Kuan, Q. Meng, L.T.B. La, L. Luong, O. Youssf, J. Ma “Epoxy/graphene platelets nanocomposites with two levels of interface strength,” Polymer, Vol. 52, pp. 1603-1611, 2011.
[2] C. Chen, Y. Tang, Y.S. Ye, Z. Xue, Y. Xue, X. Xie, “High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging,” Composites Science and Technology, Vol. 105, pp. 80–85, 2014.
[3] P. Chu, H. Zhang, J. Zhao, F. Gao, Y. Guo, B. Dang, Z. Zhang, “On the volume resistivity of silica nanoparticle filled epoxy with different surface modifications,” Composites Part A: Applied Science and Manufacturing, Vol. 99, pp. 139-148, 2017.
[4] S. Rimdusit, H. Ishida, “Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins,” Polymer, Vol. 41, pp. 7941-7949, 2000.
[5] W. Liu, Z. Wang, L. Xiong, L. Zhao, “Phosphorus-containing liquid cycloaliphatic epoxy resins for reworkable environment-friendly electronic packaging materials,” Polymer, Vol. 51, pp. 4776-4783, 2010.
[6] Q. Guo, P. Zhu, G. Li, J. Wen, T. Wang, D. Lu, R. Sun, C. Wong, “Study on the effects of interfacial interaction on the rheological and thermal performance of silica nanoparticles reinforced epoxy nanocomposites,” Composites Part B: Engineering, Vol. 116, pp. 388-397, 2017.
[7] 顧宜,複合材料,新文京開發出版股份有限公司台北,2002
[8] 林金川,以橡膠改質環氧樹脂提升交聯樹脂薄膜撓曲性之研究,南台科技大學化學工程研究所碩士論文,2004
[9] M. R. Ayatollahi, E. Alishahi, S. Shadlou, “Mechanical behavior of nanodiamond/epoxy nanocomposites,” International Journal of Fracture, Vol. 170, pp. 95-100, 2011.
[10] 丁沛熙,利用多晶矽於絕緣層之基底建立中心凸塊結構之壓力感測元件,國立交通大學電子工程學系 碩士論文,2004
[11] S. Sprenger, “Epoxy Resin composites with surface-modified silicon dioxide nanoparticles: a review,” Journal of Applied Polymer Science, Vol. 130, pp. 1421-1428, 2013.
[12] Q. Guo, P.L. Zhu, G. Li, L. Huang, Y. Zhang, D.Q. Lu, “One-pot synthesis of bimodal silica nanospheres and their effects on the rheological and thermal–mechanical properties of silica–epoxy composites,” RSC Advances, Vol. 5, pp. 50073-50081, 2015.
[13] N. Roenner, K. Hutheesing, A. Fergusson, G. Rein, “Simultaneous improvements in flammability and mechanical toughening of epoxy resins through nano-silica addition,” Fire Safety Journal, Vol. 91, pp. 200-207, 2017.
[14] J. Abenojar, J. Tutor, Y. Ballesteros, J.C. del Real, M.A. Martínez, “Erosion-wear, mechanical and thermal properties of silica filled epoxy nanocomposites,” Composites Part B: Engineering, Vol. 120, pp. 42–53, 2017.
[15] D.J. Kang, G.U. Park, H.Y. Park, H.G. Im, “A robust transparent encapsulation material: Silica nanoparticle-embedded epoxy hybrid nanocomposite,” Composites Science and Technology, Vol. 144, pp. 107–113, 2017.
[16] H. Zhou, H.Y. Liu, H. Zhou, Y. Zhang, X. Gao, Y.W. Mai, “On adhesive properties of nano-silica/epoxy bonded single-lap joints,” Materials & Design, Vol. 95, pp. 212–218, 2016.
[17] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991.
[18] C. Journet, P. Bernier, “Production of carbon tubes,” Applied Physics A, Vol. 67, pp. 1–9, 1998.
[19] C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, A. Lefrant, P. Deniard, R. Lee, J.E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature, Vol. 388, pp. 756-758, 1997.
[20] B.I. Yakobson, R.E. Smalley, “Fullerence nanotubes: C1,000,000 and beyond,” American Scientist, Vol. 85, pp. 324-337, 1997.
[21] A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Todriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterisation,” Applied Physics A, Vol. 67, pp. 29-37, 1998.
[22] M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar, “Pyrolytic carbon nanotubes from vapor-grown carbon fibres,” Carbon, Vol. 33, pp. 873-881, 1995.
[23] P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Fohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters, Vol. 313, pp. 91-97, 1999.
[24] R.R. Schlittler, J.W. Seo, J.K. Gimzewski, C. Durkan, M.S.M. Saifullah, M.E. Welland, “Single crystals of single-walled carbon nanotubes formed by self-assembly,” Science, Vol. 292, pp. 1136-1139, 2001.
[25] E.T. Thostenson, Z.F. Ren, T.W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
[26] M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Physical Review Letters, Vol. 84, pp. 5552-5555, 2000.
[27] J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus, Z.F. Ren, “Superplastic carbon nanotubes,” Nature, Vol. 439, p. 281, 2006.
[28] B.S. Hadavand, K.M. Javid, M. Gharagozlou, “Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite,” Materials & Design, Vol. 50, pp. 62-67, 2013.
[29] M. Mohammed, Z. Li, J. Cui, T. Chen, “Acid-doped multi-wall carbon nanotube/n-Si heterojunctions for enhanced light harvesting,” Solar Energy, Vol. 106, pp. 62-67, 2013.
[30] 凌國銓,奈米碳管/環氧樹脂複合材料之電磁屏蔽與機電性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2007。
[31] 沈文馨,微波處理對多壁奈米碳管/環氧樹脂複合材料機械性質之影響,國立清華大學動力機械工程學系碩士論文,新竹,2008。
[32] J.B. Bai, A. Allaoui, “Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation,” Composites Part A: Applied Science and Manufacturing, Vol. 34, pp. 689-694, 2003.
[33] 林東炫,多壁奈米碳管/環氧樹脂複合材料之機械與動態特性研究,國立清華大學動力機械工程學系碩士論文,新竹,2014。
[34] 兆光實業有限公司:http://zh-tw.choko.asia/,Choko Co., Ltd, 2017.
[35] 台灣康晉科學有限公司:http:// http://www.conjutek.com//,Conjutek Co., Ltd, 2017.
[36] 李佳叡,奈米鑽石/環氧樹脂複合材料之分散性與機械特性研究,國立清華大學動力機械工程學系碩士論文,新竹,2016
[37] 許哲瑋,氧化石墨烯/環氧樹脂複合材料之製備與機械特性研究,國立清華大學動力機械工程學系碩士論文,新竹,2017
[38] 周鈞淳,碳氣凝膠對高分子預浸材積層板複合材料之機械性質影響,國立清華大學動力機械工程學系碩士論文,新竹,2010。
[39] 張皓翔,奈米碳管及孔距對對碳纖維/樹脂複合材料機械性質之影響暨修補系統黏著劑之研究,國立清華大學動力機械工程學系碩士論文,新竹,2011。
[40] 蘇黃碩,奈米碳管對碳/碳複合材料機械性質之影響,國立清華大學動力機械工程學系碩士論文,新竹,2010。
[41] R.F. Gibson, Principle of Composite Material Mechanics, CRC Press, Boca Raton, FL, U.S., 2007.
[42] ASTM D638-10, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[43] ASTM E132-04, “Standard Test Method for poisson's ratio at room temperature,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[44] ASTM D790-10, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[45] ANSI/ESD S541-2008, “Packaging Materials for ESD Sensitive Items,” EOS/ESD Association, Incorporated, 2008.
[46] J. Smallwood, “A practical comparison of surface resistance test electrodes,” Journal of Electrostatics, Vol.88, pp. 127-133, 2017.
[47] ASTM D257-14, “Standard Test Methods for DC Resistance or Conductance of Insulating Materials,” Annual Book of ASTM Standards, Vol. 10.1, 2014.
[48] ANSI/ESD STM11.13-2004, “Two Point Resistance Measurement,” EOS/ESD Association, Incorporated, 2004.
[49] J.W. Dally, W.F. Riley, Experimental Stress Analysis, McGraw-Hill, New York, 1991.
[50] K.T. Lau, M. Lu, C.K. Lam, H.Y. Cheung, F.L. Sheng, H.L. Li, “Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion,” Composites Science and Technology, Vol. 65, pp. 719-725, 2005.
[51] G. Gkikas, N.M. Barkoula, A.S. Paipetis, “Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy,” Composites Part B, Vol.43, pp.2697–2705, 2012