研究生: |
田剛銘 Tien, Kang-Ming |
---|---|
論文名稱: |
無位置感測切換式整流器開關式磁阻馬達驅動系統之開發 DEVELOPMENT OF POSITION SENSORLESS SWITCH-MODE RECTIFIER FED SWITCHED-RELUCTANCE MOTOR DRIVES |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
許源浴
Hsu, Yuan-Yih 陳盛基 Chen, Seng-Chi 劉添華 Liu, Tian-Hua |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 153 |
中文關鍵詞: | 開關式磁阻馬達 、換相移位 、主動式功率濾波器 、開關式整流器 、功因校正 、升壓 、反轉 、再生煞車 、無位置感測控制 |
外文關鍵詞: | switched-reluctance motor, commutation shift, active power filter, switch-mode rectifier, power factor correction, voltage boosting, reversible, regenerative braking, sensorless control |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發不同切換式整流器前級供電之開關式磁阻馬達驅動系統,並提出其無位置感測控制機構。在探討開關式磁阻馬達之基礎及一些相關電力電子技術後,建構一標準型開關式磁阻馬達驅動系統,藉由適當之移位、電流與速度控制,獲得良好之加/減速、反轉、動態響應等特性。在高速運轉情況下,應用直流鏈升壓降低反電動勢對電流追控之影響。接著提出窄波電壓注入之無位置感測控制機構,並以之建構無位置感測開關式磁阻馬達驅動系統。窄波電壓注入機構、響應電流偵測及信號處理機構均妥以設計,以得可媲美於標準型開關式磁阻馬達驅動系統之驅控性能。
接著開發一標準三相全橋式升壓型切換式整流器,作為馬達驅動系統之前級轉換器。在良好交流入電電力品質下,具可升壓直流鏈電壓以增強馬達系統於高速驅控特性,而再生煞車回收能量可成功送回市電。
最後,本論文建構一主動功率濾波器輔助之三相單開關升壓式不連續電流切換式整流器,作為馬達驅動系統之前級轉換器,具有標準三相全橋式升壓切換式整流器供電驅動系統之完全功能,然此型前級轉換器具有較高之功率元件額定利用率。
This thesis develops the switched-reluctance motor (SRM) drives with different switch-mode rectifier (SMR) front-ends and proposes a SRM position sensorless control scheme. After comprehending the basics of a SRM drive and some related power electronic technologies, a standard SRM drive is first established. Through proper commutation, current and speed controls, it possesses good driving performances, including acceleration/deceleration, reversible and regenerative braking operations. Under higher speeds, the DC-link boosting is further applied to reduce the effects of back electromotive force (EMF) on the winding current response. Next, a rotor position estimation scheme based on narrow pulse voltage injection is developed and applied for constructing a position sensorless SRM drive. The pulse voltage injection scheme, the resulted current detecting and signal conditioning schemes are all adequately designed to let its driving characteristics being comparable to those of standard SRM drive.
Second, a three-phase full-bridge boost switch-mode rectifier (SMR) is established to be the front-end of the SRM drive. Under good line drawn power quality, the DC-link voltage of the SRM drive is boostable to enhance the SRM driving performance in higher speeds. Moreover, the recovered regenerative braking energy can be successfully sent back to the mains.
Third, another SMR front-end SRM drive is proposed and comparatively evaluated. This AC/DC front-end consists of a three-phase single-switch (3P1SW) discontinuous conduction mode (DCM) boost SMR and a three-phase shunt active power filter (APF). All functions of the standard full-bridge SMR fed SRM drive are preserved by this type of SRM drive. However, the rating analysis demonstrates that the higher power device rating utilization is possessed.
REFERENCES
A. Fundamentals of SRM
[1] T. J. E. Miller, Switched Reluctance Motors and Their Control, Oxford: Clarendon Press, 1993.
[2] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[3] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[4] A. Lebsir, A. Bentounsi, R. Rebbah, and S. Belakehal, “Comparative study of PMSM and SRM capabilities,” in Proc. IEEE POWERENG, 2013, pp. 760-763.
[5] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1 no. 3, pp. 245-254, 2015.
[6] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol.3, no. 1, pp. 58-75, 2017.
[7] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. N. Srinivas, “Switched-reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
[8] N. Schofield, S. A. Long, D. Howe, and M. McClelland, “Design of a switched reluctance machine for extended speed operation,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 116-122, 2009.
[9] P. C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: Concept to implementation, ” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010.
[10] T. Ishikawa and H. Dohmeki, ”The fundamental design technique of switched reluctance motors, and comparison with PMSM” in Proc. IEEE ICEM, 2012, pp. 500-504.
[11] K. Ohyama, Y. Nakazawa, K. Nozuka, and H. Fujii “Design of high efficient switched reluctance motor for electric vehicle,” in Proc. IEEE IECON, 2013, pp. 7325-7330.
[12] N. Matsui, T. Kosaka, N. Minoshima, and Y. Ohdachi, “Development of SRM for spindle motor system,” in Proc. IEEE IAS, 1998, vol. 1, pp. 580-585.
[13] M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[14] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
[15] S. M. Castano, J. M. Altes, and A. Emadi, “Development and performance analysis of a switched reluctance motor drive for an automotive air-conditioning system,” IEEE Trans. Transport. Electrific., pp. 1-8, 2016.
[16] B. Singh, A. K. Mishra, and R. Kumar, “Solar powered water pumping system employing switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3949-3957, 2016.
[17] I-A. Viorel, L. Szabo, L. Lowenstein, and C. Stet, “Integrated starter-generators for automotive applications,” Acta Electrotehnica., vol. 45, no. 3, pp. 255-260, 2004.
[18] L. Kolomeisev, D. Kraynov, S. Pakhomin, F. Rednov, E. Kallenbach, V. Kireev, T. Schneider, and J. Bocker, “Control of a linear switched reluctance motor as a propulsion system for autonomous railway vehicles,” in Proc. EPE-PEMC, 2008, pp. 1598-1603.
[19] A. Omekanda, B. Lequesne, H. Klode, S. Gopalakrishnan, and I. Husain, “Switched reluctance and permanent magnet brushless motors in highly dynamic situations: a comparison in the context of electric brakes,” IEEE Ind. Appl. Mag., vol. 15, no. 4, pp. 35-43, 2009.
[20] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013.
[21] K. W. Hu, P. H. Yi and C. M. Liaw, “An EV SRM drive powered by battery/super-capacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015.
[22] R. Krishnan, D. Blanding, A. Bhanot, A. M. Staley, and N. S. Lobo, “High reliability SRM drive system for aerospace applications,” in Proc. IEEE IECON, 2003, vol. 2, pp. 1110-1115.
[23] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, 2017.
[24] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron, vol. 23, no. 1, pp. 445-454, 2008.
[25] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron, vol. 26, no. 9, pp. 2512-2527, 2015.
B. SRM Converters
[26] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
[27] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: a comparative analysis,” IEEE Trans. Transport. Electrific., pp. 1-6, 2014.
[28] K. W. Hu, J. C. Wang, T.S. Lin and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 273-284, 2015.
[29] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[30] S. Mir, I. Husain, and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
[31] K. Tomczewski and K. Wrobel, “Improved C-dump converter for switched reluctance motor drives,” IET Power Electron., vol. 7, Iss. 10, pp. 2628-2635, 2013.
[32] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[33] H. L. Huy, K. Slimani, and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 355-362, 1991.
[34] Y. Murai, J. Cheng, and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE IAS, 1997, vol. 1, pp. 676-681.
[35] C. K. Pan, A DSP-based soft-switching converter-fed switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003.
[36] C. M. Wang, Development of switched-reluctance motor drive with three-phase switch-mode rectifier front-end, Master Thesis, Department of Electrical Engineering , National Tsing Hua University, ROC, 2010.
[37] Y. G. Dessouky, B. W. Williams, and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
[38] A. Dahmane, F. Meebody, and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
[39] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[40] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[41] T. Gopalarathnam and H. A. Toliyat, “A high power factor converter topology for switched reluctance motor drives,” in Proc. IEEE IAS, 2002, vol. 3, pp. 1647-1652.
[42] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[43] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
C. Modeling and Dynamic Controls
[44] V. Vujicic and S. N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
[45] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
[46] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
[47] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[48] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[49] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[50] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen, and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[51] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[52] F. Peng, J. Ye, and A. Emadi, “A digital PWM current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7087-7098, 2016.
[53] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched- reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, 2016.
[54] L. Ben Amor, L.-A. Dessaint, and O. Akhrif, “Switched reluctance motor torque control with peak current minimization,” in Proc. IEEE IECON, 2004, vol. 2, pp. 1885-1890.
[55] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[56] G. John and A. R. Eastham, “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993, vol. 1, pp. 317-320.
[57] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[58] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[59] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[60] M. A. A. Morsy, M. S. A. Moteleb, and H. T. Dorrah, “Development of robust fuzzy sliding mode control technique for nonlinear drive systems,” in Proc. IEEE MHS, 2006, pp. 1-6.
[61] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[62] D. E. Cameron, J. H. Lang, and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
[63] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
[64] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Elect. Power Appl., vol. 4, no. 5, pp. 380-396, 2010.
[65] V. P. Vujicic, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
D. Commutation Instant Tuning
[66] R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. IET EPE, 1993, vol. 6, pp. 20-25.
[67] J. J. Gribble, P. C. Kjaer, C. Cossar, and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[68] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen, and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[69] M. Rodrigues, P. J. Costa Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
[70] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[71] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[72] Y. Sozer and D. A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” IET Power Elect. Appl., vol. 1, no. 3, pp. 395-401, 2007.
[73] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[74] K. W. Hu, Y. Y. Chen, T. S. Lin and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[75] H. N. Huang, K. W. Hu and C. M. Liaw, “A switch-mode rectifier fed switched-reluctance motor drive with dynamic commutation shifting using DC-link current,” IET Electric Power Applications, vol. 11, no. 4, pp. 640-652, 2017.
E. Switch-mode Rectifiers and Active Power Filters
[76] M. Hengchun, F. C. Y. Lee, D. Boroyevich, and S. Hiti, “Review of high performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[77] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[78] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems– part I” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[79] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems– part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[80] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998.
[81] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[82] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Real-time implementation of a discrete nonlinearity compensating multiloops control technique for a 1.5-kW three-phase/switch/ level Vienna converter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1225-1234, 2008.
[83] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
[84] H. Chen, N. David and D. C. Aliprantis, “Analysis of permanent-magnet synchronous generator with Vienna rectifier for wind energy conversion system,” IEEE Trans. Sustain. Energy., vol. 4, no. 1, pp. 154-163, 2013.
[85] Flores-Bahamonde, F., Valderrama-Blavi, H., Martinez-Salamero, L., Maixe-Altes, J., and Garcia, G., “Control of a three-phase AC/DC VIENNA converter based on the sliding mode loss-free resistor approach,” IET Power Electron., vol. 7, issue 5, pp. 1073-1082, 2014.
[86] K. W. Hu and C. M. Liaw, “A position sensorless surface-mounted permanent-magnet synchronous generator and its operation control,” IET Power Electron., vol. 8, no. 9, pp. 1636-1650, 2015.
[87] B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960-971, 1999.
[88] M. El-Habrouk, M.K. Darwish, and P. Mehta, “Active power filters: a review,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 403-413, 2000.
[89] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, Wiley-IEEE Press, 2007.
[90] S. Rahmani, N. Mendalek, and K. Al-Haddad, “Experimental design of a nonlinear control technique for three-phase shunt active power filter,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3364-3375, 2010.
[91] M. Sarra, J. Gaubert, A. Chaoui, and F. Krim, “Two control strategies comparison of a three phase shunt active power filter for power quality improvement with experimental validation,” in Proc. IEEE EPE, 2011, pp. 1-11.
[92] T. C. Hsu, Development of a switched-reluctance motor drive with active power factor filter assisted three-phase single-switch boost switch-mode rectifier, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2016.
F. Position Sensorless Control
[93] M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 40-47, 2002.
[94] J. Ye, B. Bilgin, and A. Emadi, “Elimination of mutual flux effect on rotor position estimation of switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1499-1512, 2015.
[95] E. Bassily, “New rotor-position estimation technique for sensorless switched reluctance motor,” in Proc. IEEE AMC, 2008, pp. 399-404.
[96] P. Bishop, A. Khalil, and I. Husain, “Low level amplitude modulation based sensorless operation of a switched reluctance motor,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3347-3352.
[97] E. Kayikci, M. C. Harke, and R. D. Lorenz, “Load invariant sensorless control of a SRM drive using high frequency signal injection,” in Proc. IEEE IAS, 2004, vol. 3, pp. 1632-1637.
[98] E. Kayikci and R. D. Lorenz, “Self-sensing control of a four phase switched reluctance drive using high frequency signal injection including saturation effects,” in Proc. IEEE IEMDC, 2009, pp. 611-618.
[99] E. Ofori, T. Husain, Y. Sozer, and I. Husain, “A pulse-injection-based sensorless position estimation method for a switched reluctance machine over a wide speed range,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3867-3876, 2015.
[100] G. Gallegos-Lopez, P. C. Kjaer, and T. J. E. Miller, “A new sensorless method for switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 832-840, 1998.
[101] T. Wakasa, H. J. Guo, and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” in Proc. IEEE IECON, 2002, vol. 1, pp. 502-507.
[102] H. Gao, F. R. Salmasi, and M. Ehsani, “Sensorless control of SRM at standstill,” in Proc. IEEE APEC, 2001, vol. 2, pp. 850-856.
[103] M. Krishnamurthy, C. S. Edrington, and B. Fahimi, “Prediction of rotor position at standstill and rotating shaft conditions in switched reluctance machines,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 225-233, 2006.
[104] A. Komatsuzaki, T. Bamba, and I. Miki, “A position sensorless speed control for switched reluctance motor at low speeds,” in Proc. IEEE PES, 2007, pp. 1-7.
[105] H. J. Guo, M. Takahashi, T. Watanabe, and O. Ichinokura, “A new sensorless drive method of switched reluctance motors based on motor's magnetic characteristics,” IEEE Trans. Magnetics, vol. 37, no. 4, pp. 2831-2833, 2001.
[106] H. J. Guo, W. B. Lee, T. Watanabe, and O. Ichinokura, “An improved sensorless driving method of switched reluctance motors using impressed voltage pulse,” in Proc. IEEE PCC, 2002, vol. 3, pp. 977-980.
[107] S. Kachapornkul, P. Somsiri, N. Chayopitak, K. Tungpimolrut, R. Pupadubsin, and P. Jitkreeyan, “Sensorless control of switched reluctance motor for three-phase full-bridge inverter drive,” in Proc. IEEE ICEMS, 2008, pp. 3321-3326.
[108] G. Pasquesoone, R. Mikail, and I. Husain, “Position estimation at starting and lower speed in three-phase switched reluctance machines using pulse injection and two thresholds,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1724-1731, 2011.
[109] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[110] Y. Y. Chen, Development of standard and position sensorless switched-reluctance motor drive with power factor corrected front-end, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2014.
G. Others
[111] “TMS320F28335 digital signal processors data manual,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, August 29, 2016.