研究生: |
楊宗杰 Yang, Tsung-Chieh |
---|---|
論文名稱: |
適用於快閃記憶體系統之訊號處理與低密度查核碼架構 Signal processing and LDPC decoding architectures for NAND flash memory systems |
指導教授: |
翁詠祿
Ueng, Yeong-Luh |
口試委員: |
呂仁碩
Liu, Ren-Shuo 王忠炫 Wang, Chung-Hsuan 林茂昭 Lin, Mao-Chao 黃元豪 Huang, Yuan-Hao 李晃昌 Lee, Huang-Chang |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 快閃記憶體 、低密度查核碼 、訊號處理 、解碼器架構 |
外文關鍵詞: | NAND flash memory, LDPC, signal processing, decoder architecture |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這份論文研究了快閃記憶體在高次位元儲存應用下的訊號處理與低密度查核碼解碼架構。
首先介紹快閃記憶體的基本操作原理以及在使用過程中所遭受的儲存電荷偏移以及永固測試後的資料錯誤原因。闡述因為半導體製程微縮而引發快閃記憶體在傳統2D製程上的微縮極限,快閃記憶體的製程發展進而全面轉入3D立體結構。除此之外,為了更高容量的儲存密度,單一記憶體單元所儲存的位元數也增加到三位元或甚至是四位元。對應的儲存電荷位階也由八個位階增加一倍到了十六個位階。當3D快記憶體的堆疊結構增加時,除了單晶片的儲存容量倍數增加,但是也對應增加了許多設計的挑戰。接著介紹快閃記憶體中有關讀取資料的電路設計。從單位元開始到一個三位元的單元讀取過程,為了得到更強大的更正能力而使用軟式解碼的過程中需要讀取資料位元外還需要搭配其可靠度位元。
接下來呈現一個適合使用於高位元快閃記憶體的低密度查核碼的檢查矩陣設計。該設計擁有高碼率以及適合高速積體電路設計之特性。介紹重組信度傳遞解碼演算法在此檢查矩陣的結構下,使用降低記憶體存取頻寬的方法降低解碼器設計的複雜度。為了探討錯誤更正碼與快閃記憶體通道雜訊的整合設計。我們設計了一個有效模擬快閃記憶體通道雜訊的方法。利用此通道雜訊模擬,設計物理單元資料放置模式的方法來將儲存資料寫入快閃記憶的的單元中。抗雜訊能力勝於傳統的邏輯頁放置模式。探討在此通道雜訊下模擬低密度查核碼的軟式解碼方法及最佳化的更正力。
再來是為了增加高位元快閃記憶體的資料讀取效率我們提出了一個可能的讀取方法。藉由一個全域的讀取電壓掃描,直接紀錄該電荷準位。在設計一個新式的資料傳輸介面,將記錄下來的電荷準位分為符號位元傳輸與軟式位元傳輸。此訊號讀取方法洽可以與所提出的快閃記憶體雜訊模型吻合。在解碼端收取符號位元與軟式位元計算每一個資料位元的可靠度再進入低密度查核碼的軟式解碼。此方法可以提供更有效率且更正能力更強的解碼效果。
在論文的最後一部份提出了一個新穎的整合式方法。將先前所探討的所有方式結合用於真實快閃記憶體使用場景。此過程中包含的準位從新判定,軟式解碼可靠度映射,軟式解碼,決策回饋更新通道訊息,最少耗電下解碼成功。包含電荷準位偏移以及噪聲容限減少等狀況,都可以藉由單一讀取單一整體狀態傳輸,就可以一次將資料解碼成功。
This dissertation describes a data acquisition study the flash memory on the high level per cell applications by using Digial signal processing and the low desity parity check code(LDPC) decoding methods.
First, the NAND flash basic operaions and the data error behaviors from the endurance and data-retention disturbance will be introduced. Because of the 2D NAND flash's process shrinking limitation, the NAND flash process and structure move into 3D era from this year entirely. The single cell's stored bit number also increased from 3bit to 4bit and its number of levels were also improved from 8 to 16 levels. When increasing the stack number of the 3D structure, single chip storage capacity will become double in every generation, and there will be more design challenges . We introduced the data read flow and related circuit from single-level-cell(SLC) to tripple-level-cell(TLC) in the NAND flash. Except the data-bit access, the soft information fetching flow for the reliablity bit is needed for the stronger correction capability with the soft decoding.
Second, we showed a LDPC's parity check matrix(CPM) design which is suitable for the high level cell NAND flash. The CPM with high code rate is suitable for high throughput decoder's VLSI design. A shuffled message passing-decoding (MPD) was used in the PCM with a proposed memory access reduction method to reduce the design complexity. For the purpose of integrated design of the error correction code with the NAND flash channel model, we provided an efficient model to simulate NAND flash channel noise. According to this model, the physical cell based data allocation contributed a better noise immunity capability than the traditional logical page based(LPB) data placement. Then, we discussed the result from the LDPC soft-decoding and its optimization method for strogner correction capability from this noise model.
Third, we proposed a state-info sensing scheme for the improving of the high level cell NAND flash data access efficiency. This method recorded the state informaiton of the electron levels through a whole sensing range scan. We designed a new data transfer interface to deliever sign bit and the soft bit information sequentially. This single access method matched the proposed noise model. The decoder can identify each data-bit's LLR value from the sign bit and soft bit for the LDPC soft decoding. This method provided a more efficient and stronger correction capability.
In the last part of the dissertation, a systematic solution to utilize state-info sensing scheme for the real sitiuation. The whole process included new level identification, reliablility mapping, soft-decoding, decision feedback channel information reconstruction, and the minimum power for correctable decoding. The Vth-shifting and noise margin reduction cannot be solved by tradtional interface and method, but the proposed flow will get a successful decoding within a single read and one pass state information delivery.
[1] D. Kwak et al., “Integration technology of 30nm generation multi-level NAND Flash for 64 Gb NAND Flash memory,” Symp. VLSI Tech. Dig., pp. 12-13, 2007.
[2] K.-T. Park et al., “Zeroing cell-to-cell interference page architecture with temporary LSB storing and parallel MSB program scheme for MLC NAND Flash memories,” IEEE J. Solid-State Circuits, vol. 43, pp. 919- 928, 2008.
[3] K. Prall et al., “25nm 64Gb MLC NAND Technology and Scaling Chal- lenges,” IEDM Tech. Dig., pp. 5.2.1-5.2.4, 2010.
[4] M. Helm, “A 128 Gb MLC NAND-Flash device using 16 nm planar cell,”
ISSCC Dig. Tech. Papers, pp. 326-327, 2014.
[5] J. Jang et al., “Vertical cell array using TCAT (terabit cell array tran- sistor) technology for ultra high density NAND Flash memory,” Symp. VLSI Tech. Dig., pp. 192-193, 2009.
[6] L. Dolecek and Y. Cassuto, “Channel Coding for Nonvolatile Memory Technologies: Theoretical Advances and Practical Considerations,” Proc. IEEE, vol. 105, issue 9, pp. 1705-1724, 2017.
[7] H.-C. Lee, J.-H. Shy, Y.-M. Chen and Y.-L. Ueng, “LDPC coded mod- ulation for TLC flash memory, ” IEEE Information Theory Workshop (ITW), pp. 204-208, 2017.
[8] L. Kong, J. Li, P. Chen and S. Zhang, “Protograph QC-LDPC codes design for multi-level cell flash memories,” International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1-5, 2017.
[9] L. Shijun, Z. Xuecheng and W. Baocun, “Program and read methods with offset in quad-level-cell NAND design,” EDSSC, pp.1-2, 2017.
[10] Ri. Micheloni, L. Crippa, A. Marelli, “Inside NAND Flash Memories,” Springer.
[11] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. of the Royal Society of London, Vol. 119, No. 781, May 1928, pp. 173–181.
[12] S.-M. Jung et al., “Three dimensionally stacked NAND Flash memory technology using stacking single crystal Si layers on ILD and TANOS structure for beyond 30 nm node,” IEDM Tech. Dig., pp. 37-40, 2006
[13] H. Tanaka et al., “Bit cost scalable technology with punch and plug pro- cess for ultra high density Flash memory,” VLSI Symp. Tech. Dig., pp 14-15, 2007.
[14] K.-T. Park et al., “Three-dimensional 128Gb MLC vertical NAND Flash-memory with 24-WL stacked layers and 50MB/s high-speed pro- gramming,” Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 2014 IEEE International, pp. 334-335, 2014.
[15] W. Jeong et al., “A 128 Gb 3b/cell V-NAND Flash Memory With 1 Gb/s I/O Rate,” IEEE J. Solid-State Circuits, vol. 51, pp. 204-212, 2016.
[16] D. Kang et al., “256 Gb 3 b/Cell V-nand Flash Memory With 48 Stacked WL Layers,” IEEE J. Solid-State Circuits, vol. 52, pp. 210–217, 2017.
[17] C. Kim et al., “512Gb 3b/cell 64-stacked WL 3D V-NAND flash memory,” Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 2017 IEEE International, pp. 202-203, 2017.
[18] E. S. Choi, S. K. Park, “Device Considerations for High Density and Highly reliable 3D NAND Flash Cell in Near Future”. IEDM 2012, pp. 941-944.
[19] J. Jang et al.,“Vertical cell array using TCAT (terabit cell array transistor) technology for ultra high density NAND Flash memory,” Symp. VLSI Tech. Dig., pp. 192-193, 2009.
[20] J. Lee et al., “A new ruler on the storage market: 3D-NAND flash for high-density memory and its technology evolutions and challenges on the future,” IEDM Tech. Dig., pp. 284-287, 2016.
[21] W. Jeong et al., “A 128 Gb 3b/cell V-NAND Flash Memory With 1 Gb/s I/O Rate,” IEEE J. Solid-State Circuits, vol. 51, pp. 204-212, 2016.
[22] D. Kang et al., “256 Gb 3 b/Cell V-nand Flash Memory With 48 Stacked WL Layers,” IEEE J. Solid-State Circuits, vol. 52, pp. 210–217, 2017.
[23] C. Kim et al., “512Gb 3b/cell 64-stacked WL 3D V-NAND flash memory,” Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 2017 IEEE International, pp. 202-203, 2017.
[24] J. Yang, “New ECC/DSP Solution Helps Migration to 3D NAND Era”.
2015 Flash Memory Summit.
[25] R. M. Tanner, “A recursive approach to low-complexity codes,” IEEE Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533–547, Sep. 1981.
[26] “Uniform Pseudo Random Number Generator”. Internet: http://opencores.org/project, systemcrng.
[27] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Trans. Commun., vol. 53, no. 6, pp. 209–213, Feb. 2005.
[28] S. Legoff, A.Glavieux and C.Berrou, “Turbo codes and high efficiency modulation,” Proc. of IEEE ICC’94 pp.645-649. May. 1994.
[29] T. M. Duman, “Turbo codes and turbo-coded modulation: Analysis and performance bounds,” Ph.D. dissertation, Elect. Comput. Eng. Dep., Northeastern Univ., Boston, MA, May 1998.