簡易檢索 / 詳目顯示

研究生: 洪家裕
Chia-Yu Hung
論文名稱: 針對時變之多出多入通道的強健性合併等化器設計:透過切換式模型的方法
Robust Combining Equalizer Design for Time-Varying MIMO Channels: A Switching Model Approach
指導教授: 陳博現
Bor-Sen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 49
中文關鍵詞: 時變多出多入強韌性強健性等化器切換式模型
外文關鍵詞: Time varying, MIMO, robust, equalizer, switching model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當在考慮一個時變的多出多入通訊系統時,許多的研究者將研究投入了強韌
    性的等化器(Robust equalizer),以對抗因為通道的不確定性(Channel uncertainty)
    所帶來的問題。設計強韌性等化器的方法中,最受到歡迎的分別是貝氏法
    (Bayesian approach)和最小化最大法(Minimax approach)。不過這樣的強韌性
    等化器可能有太過於保守的缺陷。這裡所指的意思是這種等化器可能無法反應到
    一個時變的通道:貝氏法只是考慮整個系統可能出現的平均不確定性,而最小化
    最大法則只能考慮可能出現的最差不確定性。在這個研究當中,我們發展了一個
    次佳最小化最大的合併等化器(Suboptimal minimax combining equalizer),以用
    來涵蓋各種可能的時變多出多入通道。這個時變通道,我們則是採取馬可夫模型
    (Markov model)來描述其轉換機制。根據次佳設計的概念,我們提出的等化器
    將會以最小化最大法處理多種通道不確定性的狀態。接下來,這些不同的等化器
    則可以以合適的比重(Weighting)來結合。這些比重的選取方式將會牽涉到可
    能性函數(Likelihood function),以及狀態之間的轉換機率(Transition
    probabitlities)。
    我們首先介紹我們的設計概念:將通道不確定狀態切割成M 種可能之
    後,針對此M 種狀態設計出不同的次佳線性強韌等化器。最後則要將這些不同
    的次佳線性強韌等化器依照合適的比重來合併,成為合併線性強韌等化器。
    接下來的重點可分為兩個部份,亦即:1. 如何求出M 種針對不同狀態
    設計的等化器,2. 如何找到合適的比重加以合併。在第一個部份中,我們要先
    提出一個引理,利用這個引理我們將可以得到次佳化的設計結果。


    When considering time-varying MIMO communication systems, there were a
    lot of researchers dedicating to the study of the robust equalizer to combat
    the problem caused by channel uncertainty. The most popular approaches to
    design a robust equalizer are the Bayesian approach and the minimax approach.
    However, the conventional robust equalizer is sometimes too conservative, which
    means it may not respond to time-varying channel very well, since they would
    always consider only the average uncertainty and worst-case uncertainty in the
    Bayesian approach and the minimax approach, respectively. In this study, we
    develop a suboptimal minimax-combining equalizer to cover all possible timevarying
    MIMO channels, which is modeled as a channel uncertain state switching
    system in Markov transition. Due to the idea of suboptimal design, the proposed
    equalizer extends the conventional MMSE equalizer to the robust combining
    equalizer. This proposed equalizer will deal with the multiple uncertainty ranges
    via minimax approach, and then the robust equalization results with respect
    to distinct uncertainty ranges are combined together by weightings based on
    likelihood function and the channel transition probabilities as the output. The
    combination equalization involves the switching probability between the multiple
    channel uncertain states and the likelihood functions. The advantage of the
    switching system modeling is that when the time-varying channel falls into a
    certain channel uncertain state, then a more suitable equalizer can be found.
    When combining the multiple equalizers, the likelihood function is defined so
    that give the more probable equalizers larger weightings.

    1 INTRODUCTION 1 2 SYSTEM MODEL 8 3 PROBLEM FORMULATION 13 3.1 The Suboptimal Robust Combined Equalizer Design 15 3.2 Robust Combined Equalizer . . . . . . . . . . . . . 23 4 PERFORMANCE ANALYSIS 26 4.1 The Role of the Parameter  . . . . . . . . . . . . 26 4.2 The Signal-to-Interference-and-Perturbation Ratio . 28 4.3 The Probability of Bit Error . . . . . . . . . . . 29 5 SIMULATIONS 31 6 CONCLUSIONS 35 A Proof of The Convexity of The Upper-Bounding Cost Function in Lemma 2 36

    [1] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An overview
    of MIMO communications–a key to gigabit wireless,” Proc. IEEE, vol. 92,
    no. 2, pp. 198–218, February 2004.
    [2] R. N. A. J. Paulraj and D. Gore, Introduction to space-time wireless com-
    munications. Cambridge University Press, 2003.
    [3] H. Bocskei and A. J. Paulraj, Multiple-input multiple-output (MIMO) wire-
    less systems. Cambridge University Press, 2003.
    [4] D. Gesbert, M. Shafi, D. Shiu, P. J. Smith, and A. Naguib, “From theory to
    practice: An overview of MIMO space-time coded wireless systems,” IEEE
    J. Sel. Areas Commun., vol. 21, no. 3, pp. 281–302, April 2003.
    [5] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a
    fading environment using multiple antennas,” Wireless Personal Commun.,
    vol. 6, no. 3, pp. 311–355, 1998.
    [6] K. C. Goh, M. G. Safonov, and G. P. Papavassilopoulos, “A global optimization
    approach for the bmi problem,” in Conference on Decision and
    Control, Lake Buena Vista, FL, December 1994.
    [7] J. Lofberg, “Yalmip : A toolbox for modeling and optimization in
    MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
    2004. [Online]. Available: http://control.ee.ethz.ch/ joloef/yalmip.php
    [8] B. S. Chen and J. F. Liao, “Adaptive MC-CDMA multiple channel estimation
    and tracking over time-varying multipath fading channels,” IEEE
    Trans. Wireless Commun., vol. 6, no. 5, May 2007.
    [9] H. Kulatunga and V. Kadirkamanathan, “Adaptive joint detection and estimation
    in MIMO systems: A hybrid systems approach,” IEEE Trans.
    Signal Process., vol. 54, no. 5, pp. 1629–1644, May 2006.
    [10] D. Gore, R. W. Heath, and A. Paulraj, “On performance of the zero forcing
    receiver in presence of transmit correlation,” journal in Proc. IEEE ISIT,
    p. 159, 2002.
    [11] B. Hassibi and H. Vikalo, “On the expected complexity of sphere decoding,”
    Proc. Asilomar Conf. Signals, Systems and Computers, vol. vol. 2, p.
    1051V1055, 2001.
    [12] C.-Y. Chi and C.-H. Chen, “Cumulant-based inverse filter criteria for
    MIMO blind deconvolution: properties, algorithms, and application to
    ds/cdma systems in multipath,” IEEE Trans. Signal Process., vol. 49, pp.
    1282–1299, July 2001.
    [13] P. Li, D. Paul, R. Narasimhan, and J. Cioffi, “On the distribution of sinr
    for the mmse MIMO receiver and performance analysis,” IEEE Trans. Inf.
    Theory, vol. 52, pp. 271–286, January 2006.
    [14] J. Yang and S. Roy, “On joint transmitter and receiver optimization
    for multiple-input-multiple-output (MIMO) transmission systems,” IEEE
    Trans. Commun., vol. 42, no. 12, pp. 3221–3231, December 1994.
    [15] ——, “Joint transmitter and receiver optimization for multiple-inputmultiple-
    output (MIMO) with decision feedback,” IEEE Trans. Inf. Theory,
    vol. 40, no. 5, pp. 1334–1347, Sep. 1994.
    [16] H. Sampath and A. Paulraj, “Joint transmit and receive optimization for
    high data rate wireless communications using multiple antennas,” in Proc.
    33th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, Oct. 1999,
    pp. 215– 219.
    [17] H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and
    decoder design for MIMO channels using the weighted mmse criterion,”
    IEEE Trans. Commun., vol. 49, no. 12, pp. 198–2206, Dec. 2001.
    [18] A. Scaglione, S. Barbarossa, and G. Giannakis, “Filterbank transceivers optimizing
    information rate in block transmissions over dispersive channels,”
    IEEE Trans. Inf. Theory, vol. 45, p. 1019V1032, 1999.
    [19] A. Scaglione, G. Giannakis, and S. Barbarossa, “Redundant filterbank precoders
    and equalizers part i: Unification and optimal designs,” IEEE Trans.
    Signal Process., vol. 47, p. 1988V2006, 1999.
    [20] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath,
    “Optimal designs for space-time linear precoders and decoders,” IEEE
    Trans. Signal Process., vol. 50, no. 5, pp. 1051–1064, May 2002.
    [21] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint tx-rx beamforming
    design for multicarrier MIMO channels: A unified framework for convex
    optimization,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2381–2401,
    Sept. 2003.
    [22] F. Xu, T. N. Davidson, J.-K. Zhang, and K. M. Wong, “Design of block
    transceivers with decision feedback detection,” IEEE Trans. Signal Pro-
    cess., vol. 54, no. 3, pp. 965–978, March 2006.
    [23] S. Chan, T. Davidson, and K. Wong, “Asymptotically minimum ber linear
    block precoders for mmse equalisation,” IEE Proc.-Commmun., vol. 151,
    no. 4, pp. 297–304, August 2004.
    [24] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high
    data rate wireless communication: Performance analysis and code construction,”
    IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765, March 1998.
    [25] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”
    IEEE JSAC, vol. 16, no. 8, pp. 1451–1458, October 1998.
    [26] V. Tarokh, H. Jafarkhani, and A. R. Calderband, “Space-time block codes
    from orthogonal designs,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp.
    1456–1467, July 1999.
    [27] A. F. Naguib and A. R. Calderbank, “Space-time coding and signal processing
    for high data rate wireless communications,” Wireless Commun.
    and Mob. Comput., vol. 1, pp. 13–43, 2001.
    [28] W.-K. Ma, B.-N. Vo, T. N. Davidson, and P.-C. Ching, “Blind ml detection
    of orthogonal space-time block codes: Efficient high-performance implementations,”
    IEEE Trans. Signal Process., vol. 54, no. 2, pp. 738–751,
    Feb. 2006.
    [29] J. Choi, “Performance analysis for transmit antenna diversity with/without
    channel information,” IEEE Trans. Veh. Technol., vol. 51, no. 1, pp. 808–
    820, Jan. 2002.
    [30] S. Zhou and G. B. Giannakis, “How accurate channel prediction needs to be
    for transmit-beamforming with adaptive modulation over rayleigh MIMO
    channels?” IEEE Trans. Wireless Commun., vol. 3, no. 4, p. 1285V1294,
    July 2004.
    [31] N. Khaled, G. Leus, C. Desset, and H. D. Man, “A robust joint linear precoder
    and decoder mmse design for slowly time-varying MIMO channels,”
    IEEE ICASSP, 2004.
    [32] A. Tunga, B. Hassibi, and T. Kailath, “MIMO decision feedback equalization
    from an H1 perspective,” IEEE Trans. Signal Process., vol. 52, no. 3,
    pp. 734–745, March 2004.
    [33] Y. F. Guo and B. C. Levy, “Worst-case mse precoder design for imperfectly
    known MIMO communications channels,” IEEE Trans. Signal Pro-
    cess., vol. 53, no. 8, pp. 2918–2930, August 2005.
    [34] ——, “Robust mse equalizer design for MIMO communication systems in
    the presence of model uncertainties,” IEEE Trans. Signal Process., vol. 54,
    no. 5, pp. 1840–1852, May 2006.
    [35] A. Pascual-Iserte and M. A. L. Daniel Perez Palomar, Ana I. Perez-Neria,
    “A robust maximin approach for MIMO communications with imperfect
    channel state information based on convex optimization,” IEEE Trans. Sig-
    nal Process., vol. 54, no. 1, pp. 346–362, January 2006.
    [36] K. Cho and D. Yoon, “On the general ber expression of one- and twodimensional
    amplitude modulations,” IEEE Trans. Commun., vol. 50, no. 7,
    pp. 1074–1080, July 2002.
    [37] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation The-
    ory. Prentice Hall International, Inc., 1993.
    [38] J. Proakis, Digital Communication, 4th ed. McGRAW-HILL, 2001.
    [39] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj,
    and H. V. Poor, MIMO Wireless Communications. Cambridge University
    Press, 2007.
    [40] E. G. Larsson and P. Stoica, Space-time block coding for wireless commu-
    nications. Cambridge University Press, 2003.
    [41] M. Stingl, “On the solution of nonlinear semidefinite programs by augmented
    lagrangian methods,” Ph.D. dissertation, University of Erlangen,
    August 2005.
    [42] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix In-
    equalities in System and Control Theory. SIAM, 1994.
    [43] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
    Press, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE