研究生: |
沈姮君 Heng-Chun Shen |
---|---|
論文名稱: |
影響昆蟲桿狀病毒表現系統的表現量與表現期之因素 Factors Governing the Magnitude and Duration of Baculovirus-Mediated Expression |
指導教授: |
胡育誠
Yu-Chen Hu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 桿狀病毒 、轉導 、表現期 |
外文關鍵詞: | baculovirus, transduction, duration |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般桿狀病毒做為基因傳遞載體時,需利用超高速離心濃縮過後的病毒液與作為轉導環境溶液的培養基(如:DMEM)混合至適當體積後,在37˚C下轉導哺乳動物細胞。然而,本實驗室先前發現到細胞生長所需的培養基會阻礙桿狀病毒載體的基因傳送,但是培養基中的哪一種成分造成此種抑制效應尚未可知。因此本研究希望找出何關鍵培養基成分使得轉導效率不佳。我們首先利用帶有不同啟動子的重組桿狀病毒轉導BHK細胞,發現於以DMEM為環境溶液的轉導結果不佳並非與其啟動子有關。在分組探討培養基成分的實驗中,結果顯示平衡鹽類溶液會抑制桿狀病毒的轉導能力。於分別去除平衡鹽溶液中的鹽類後,我們赫然發現培養基中作為緩衝溶液的NaHCO3抑制了桿狀病毒的轉導能力,並且其抑制效果與濃度有關。此外,藉由免疫螢光染色標定病毒套膜上的GP64蛋白,再以共軛焦顯微鏡觀察,我們發現NaHCO3並不影響病毒附著於細胞表面,但即時偵測同步定量聚合酶連鎖反應(quantitative real-time polymerase chain reaction, Q-PCR)分析則顯示NaHCO3確實會影響細胞內病毒的含量。總言之,本研究證實了轉導溶液中若含有NaHCO3會抑制桿狀病毒進入哺乳動物細胞,因此在未來的應用當中,我們更可進一步的將轉導環境溶液改為不含有NaHCO3的DMEM,不僅可以達到較佳的轉導效率,也可以避免細胞長時間處於PBS中,影響細胞狀況。
桿狀病毒傳遞轉殖基因的表現期一般在20天內,為延長轉殖基因的表現期,我們也探討以肌細胞做為基因治療之標的細胞的可能性,以拓展桿狀病毒於基因治療上的應用性。我們首先證實桿狀病毒可有效地轉導肌母細胞,並且無論是在肌母細胞株或是初代肌母細胞,只要分化成肌管細胞,桿狀病毒所帶轉殖基因都可表現至少60天以上。利用反轉錄聚合酶反應,我們也證實肌管細胞分化標識基因MyoD與myogenin之mRNA的表現隨時間表現增加至一定程度,並且桿狀病毒在C2C12分化出的肌管細胞中表現期的確比不會分化的對照組HeLa細胞長久,顯示長期表現與分化現象呈正相關,因此桿狀病毒在肌管細胞中能長期表現很有可能是與其終端分化有關。此外,於轉導後不同時間點分析C2C12細胞內病毒DNA與mRNA之含量的結果顯示,病毒DNA與mRNA於C2C12細胞中的降解速度確實較在HeLa中慢,並且於轉導後第21天之後的降解速度趨於平緩,存留的病毒mRNA甚至約達轉導後第1天的25%,相較之下病毒在HeLa細胞中無論是DNA或mRNA的殘留量都於轉導後第14天趨近於0%。這些結果在在都顯示以肌細胞做為基因治療標的細胞的可行性及潛力。往後我們將更進一步評估桿狀病毒/肌細胞之基因治療系統的安全性。
Baculovirus transduction of cultured mammalian cells is typically performed by incubating the cells with virus using culture medium (e.g. DMEM) as the surrounding solution. However, we previously uncovered that DMEM hinders the baculovirus-mediated gene transfer. In this study, we demonstrated that the poorer transduction by using DMEM as the surrounding solution is independent of the promoter. Examination of the medium constituents group by group revealed that the balanced salt solution suppresses the baculovirus transduction. By omitting individual salt species in the balanced salt solution, we surprisingly uncovered that NaHCO3, a common buffering agent, exerts the inhibitory effects in a concentration-dependent manner. Intriguingly, NaHCO3 did not debilitate the baculovirus, nor did it inhibit virus binding to the cells as revealed by immunofluorescence/confocal microscopy. Instead, NaHCO3 inhibited baculovirus transduction by reducing the intracellular virus number as demonstrated by quantitative real-time PCR. To our best knowledge, this is the first report unraveling the significance of NaHCO3 in gene transfer. Our finding suggests that baculovirus-mediated gene transfer can be readily enhanced by omitting NaHCO3 from the medium during the transduction period.
Furthermore, we explored the feasibility of employing baculovirus in muscle-based gene therapy in order to augment the short baculovirus-mediated expression. We demonstrated that baculovirus transduces myoblast cells efficiently and the duration of baculovirus-mediated expression is prolonged to at least 60 days after the myoblast cells differentiate into multi-nuclei myotubes. The prolonged expression also paralleled the increased cellular expression of MyoD and myogenin as demonstrated by RT-PCR, and resulted from slower degradation of viral DNA and persistent presence of the transgene mRNA, as confirmed by quantitative real-time PCR. These data collectively suggested a correlation between the prolonged expression and myogenic differentiation which resulted in extended existence of viral DNA and transgene mRNA, implicating the tremendous potential of baculovirus vector in muscle-based gene therapy.
1. Kost, T.A., J.P. Condreay, and D.L. Jarvis, Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol, 2005. 23(5): p. 567-75.
2. Ghosh, S., et al., Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. Mol Ther, 2002. 6(1): p. 5-11.
3. Hu, Y.C., Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin, 2005. 26(4): p. 405-16.
4. Kukkonen, S.P., et al., Baculovirus capsid display: a novel tool for transduction imaging. Mol Ther, 2003. 8(5): p. 853-62.
5. Nicholson, L.J., et al., RNA interference mediated in human primary cells via recombinant baculoviral vectors. Mol Ther, 2005. 11(4): p. 638-44.
6. Ong, S.T., et al., Hybrid cytomegalovirus enhancer-h1 promoter-based plasmid and baculovirus vectors mediate effective RNA interference. Hum Gene Ther, 2005. 16(12): p. 1404-12.
7. Grabherr, R., et al., Developments in the use of baculoviruses for the surface display of complex eukaryotic proteins. Trends Biotechnol, 2001. 19(6): p. 231-6.
8. Wang, K.C., et al., Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis delta virus antigens in mammalian cells. Biotechnol Bioeng, 2005. 89(4): p. 464-73.
9. Wang, C.Y. and S. Wang, Adeno-associated virus inverted terminal repeats improve neuronal transgene expression mediated by baculoviral vectors in rat brain. Hum Gene Ther, 2005. 16(10): p. 1219-26.
10. Abe, T., et al., Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J Virol, 2005. 79(5): p. 2847-58.
11. Condreay, J.P., et al., Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A, 1999. 96(1): p. 127-32.
12. Hofmann, C., et al., Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A, 1995. 92(22): p. 10099-103.
13. Powell, S.K., et al., Breeding of retroviruses by DNA shuffling for improved stability and processing yields. Nat Biotechnol, 2000. 18(12): p. 1279-82.
14. Ho, Y.C., et al., Highly efficient baculovirus-mediated gene transfer into rat chondrocytes. Biotechnol Bioeng, 2004. 88(5): p. 643-51.
15. Ho, Y.C., et al., Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J Gene Med, 2005. 7(7): p. 860-8.
16. Hsu, C.S., et al., Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol Bioeng, 2004. 88(1): p. 42-51.
17. Chen, Y.H., et al., Baculovirus-mediated production of HDV-like particles in BHK cells using a novel oscillating bioreactor. J Biotechnol, 2005. 118(2): p. 135-47.
18. Chiang, Y.W., et al., Efficient expression of histidine-tagged large hepatitis delta antigen in baculovirus-transduced baby hamster kidney cells. World J Gastroenterol, 2006. 12(10): p. 1551-7.
19. Svensson, E.C., S.K. Tripathy, and J.M. Leiden, Muscle-based gene therapy: realistic possibilities for the future. Mol Med Today, 1996. 2(4): p. 166-72.
20. Kenoutis, C., et al., Baculovirus-mediated gene delivery into Mammalian cells does not alter their transcriptional and differentiating potential but is accompanied by early viral gene expression. J Virol, 2006. 80(8): p. 4135-46.
21. Van Regenmortel MHV, F.C., Bishop DHL, Cartens EB, and L.S. Estes MK, et al., Virus Taxonomy:The Seventh Report of the International Committee on Taxonomy of Viruses. 2000, New York: Academic.
22. Braunagel, S.C., et al., Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9797-802.
23. Blissard, G.W., Baculovirus--insect cell interactions. Cytotechnology, 1996. 20(1-3): p. 73-93.
24. Hefferon, K.L., et al., Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology, 1999. 258(2): p. 455-68.
25. Kingsley, D.H., et al., A discrete stage of baculovirus GP64-mediated membrane fusion. Mol Biol Cell, 1999. 10(12): p. 4191-200.
26. Monsma, S.A., A.G. Oomens, and G.W. Blissard, The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol, 1996. 70(7): p. 4607-16.
27. WF, I.J., et al., A novel baculovirus envelope fusion protein with a proprotein convertase cleavage site. Virology, 2000. 275(1): p. 30-41.
28. Pearson, M.N., C. Groten, and G.F. Rohrmann, Identification of the lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of the Baculoviridae. J Virol, 2000. 74(13): p. 6126-31.
29. Liang, C., J. Song, and X. Chen, The GP64 protein of Autographa californica multiple nucleopolyhedrovirus rescues Helicoverpa armigera nucleopolyhedrovirus transduction in mammalian cells. J Gen Virol, 2005. 86(Pt 6): p. 1629-35.
30. Madry, H., et al., Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum Gene Ther, 2003. 14(4): p. 393-402.
31. Ernst, W., et al., Improving baculovirus transduction of mammalian cells by surface display of a RGD-motif. J Biotechnol, 2006.
32. Blissard, G.W. and J.R. Wenz, Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol, 1992. 66(11): p. 6829-35.
33. O'Reilly, D.R., Use of baculovirus expression vectors. Methods Mol Biol, 1997. 62: p. 235-46.
34. Lanier, L.M. and L.E. Volkman, Actin binding and nucleation by Autographa california M nucleopolyhedrovirus. Virology, 1998. 243(1): p. 167-77.
35. Dee, K.U. and M.L. Shuler, Optimization of an assay for baculovirus titer and design of regimens for the synchronous infection of insect cells. Biotechnol Prog, 1997. 13(1): p. 14-24.
36. Possee, R.D., Baculoviruses as expression vectors. Curr Opin Biotechnol, 1997. 8(5): p. 569-72.
37. Song, C.S., et al., Induction of protective immunity in chickens vaccinated with infectious bronchitis virus S1 glycoprotein expressed by a recombinant baculovirus. J Gen Virol, 1998. 79 ( Pt 4): p. 719-23.
38. Wang, M.Y., et al., Self-assembly of the infectious bursal disease virus capsid protein, rVP2, expressed in insect cells and purification of immunogenic chimeric rVP2H particles by immobilized metal-ion affinity chromatography. Biotechnol Bioeng, 2000. 67(1): p. 104-11.
39. Zhang, Y., et al., Expression, characterization, and immunoreactivities of a soluble hepatitis E virus putative capsid protein species expressed in insect cells. Clin Diagn Lab Immunol, 1997. 4(4): p. 423-8.
40. Szewczyk, B., et al., Baculoviruses-- re-emerging biopesticides. Biotechnol Adv, 2006. 24(2): p. 143-60.
41. Boyce, F.M. and N.L. Bucher, Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A, 1996. 93(6): p. 2348-52.
42. Kost, T.A. and J.P. Condreay, Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol, 2002. 20(4): p. 173-80.
43. Bilello, J.P., et al., Role of paracellular junction complexes in baculovirus-mediated gene transfer to nondividing rat hepatocytes. Gene Ther, 2003. 10(9): p. 733-49.
44. Shoji, I., et al., Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol, 1997. 78 ( Pt 10): p. 2657-64.
45. Airenne, K.J., et al., Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther, 2000. 7(17): p. 1499-504.
46. Pieroni, L. and N. La Monica, Towards the use of baculovirus as a gene therapy vector. Curr Opin Mol Ther, 2001. 3(5): p. 464-7.
47. Duisit, G., et al., Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J Gene Med, 1999. 1(2): p. 93-102.
48. Bilello, J.P., et al., Transient disruption of intercellular junctions enables baculovirus entry into nondividing hepatocytes. J Virol, 2001. 75(20): p. 9857-71.
49. Ly, H., et al., Gene therapy in the treatment of heart failure. Physiology (Bethesda), 2007. 22: p. 81-96.
50. Podhajcer, O.L., M.V. Lopez, and G. Mazzolini, Cytokine gene transfer for cancer therapy. Cytokine Growth Factor Rev, 2007. 18(1-2): p. 183-94.
51. Tey, S.K. and M.K. Brenner, The continuing contribution of gene marking to cell and gene therapy. Mol Ther, 2007. 15(4): p. 666-76.
52. Taylor, R.W., Gene therapy for the treatment of mitochondrial DNA disorders. Expert Opin Biol Ther, 2005. 5(2): p. 183-94.
53. Strayer, D.S., et al., Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther, 2005. 11(6): p. 823-42.
54. Karpati, G., et al., Gene therapy research for Duchenne and Becker muscular dystrophies. Curr Opin Neurol, 1997. 10(5): p. 430-5.
55. Kohn, D.B. and R. Parkman, Gene therapy for newborns. Faseb J, 1997. 11(8): p. 635-9.
56. Tomanin, R. and M. Scarpa, Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr Gene Ther, 2004. 4(4): p. 357-72.
57. Miller, A.D., The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Curr Med Chem, 2003. 10(14): p. 1195-211.
58. Mauro, A., Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol, 1961. 9: p. 493-5.
59. Rando, T.A. and H.M. Blau, Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol, 1994. 125(6): p. 1275-87.
60. Blau, H.M., J. Dhawan, and G.K. Pavlath, Myoblasts in pattern formation and gene therapy. Trends Genet, 1993. 9(8): p. 269-74.
61. Barr, E. and J.M. Leiden, Systemic delivery of recombinant proteins by genetically modified myoblasts. Science, 1991. 254(5037): p. 1507-9.
62. Dhawan, J., et al., Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science, 1991. 254(5037): p. 1509-12.
63. Osborne, W.R., et al., Gene therapy for long-term expression of erythropoietin in rats. Proc Natl Acad Sci U S A, 1995. 92(17): p. 8055-8.
64. Partridge, T.A., et al., Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature, 1989. 337(6203): p. 176-9.
65. Liu, C., et al., Long-term expression and secretion of human glucocerebrosidase by primary murine and human myoblasts and differentiated myotubes. J Mol Med, 1998. 76(11): p. 773-81.
66. Roman, M., et al., Circulating human or canine factor IX from retrovirally transduced primary myoblasts and established myoblast cell lines grafted into murine skeletal muscle. Somat Cell Mol Genet, 1992. 18(3): p. 247-58.
67. Sadelain, M., Recent advances in globin gene transfer for the treatment of beta-thalassemia and sickle cell anemia. Curr Opin Hematol, 2006. 13(3): p. 142-8.
68. Kohn, D.B., M. Sadelain, and J.C. Glorioso, Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer, 2003. 3(7): p. 477-88.
69. Brady, R.O., Emerging strategies for the treatment of hereditary metabolic storage disorders. Rejuvenation Res, 2006. 9(2): p. 237-44.
70. Enquist, I.B., et al., Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad Sci U S A, 2006. 103(37): p. 13819-24.
71. Davis, P.B. and M.J. Cooper, Vectors for airway gene delivery. Aaps J, 2007. 9(1): p. E11-7.
72. Kremer, K.L., et al., Gene delivery to airway epithelial cells in vivo: a direct comparison of apical and basolateral transduction strategies using pseudotyped lentivirus vectors. J Gene Med, 2007. 9(5): p. 362-8.
73. Singh, N., V. Pillay, and Y.E. Choonara, Advances in the treatment of Parkinson's disease. Prog Neurobiol, 2007. 81(1): p. 29-44.
74. Hu, Y.C., et al., Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: focuses on strategic infection and feeding. Biotechnol Prog, 2003. 19(2): p. 373-9.
75. Murphy, R.M., et al., Effects of creatine supplementation on housekeeping genes in human skeletal muscle using real-time RT-PCR. Physiol Genomics, 2003. 12(2): p. 163-74.
76. Johnson, K.L., et al., Interlaboratory comparison of fetal male DNA detection from common maternal plasma samples by real-time PCR. Clin Chem, 2004. 50(3): p. 516-21.
77. Ham, R.G. and W.L. McKeehan, Media and growth requirements. Methods Enzymol, 1979. 58: p. 44-93.
78. Litwin, J., A survey of various media and growth factors used in cell cultivation. Dev Biol Stand, 1979. 42: p. 37-45.
79. Waymouth, C., Ham, R. G., and Chapple, P. J., The growth requirements ofvertebrate cells in Vitro. 1981.
80. Morgan, J.F., H.J. Morton, and R.C. Parker, Nutrition of animal cells in tissue culture; initial studies on a synthetic medium. Proc Soc Exp Biol Med, 1950. 73(1): p. 1-8.
81. Eagle, H., Amino acid metabolism in mammalian cell cultures. Science, 1959. 130(3373): p. 432-7.
82. Dulbecco, R. and G. Freeman, Plaque production by the polyoma virus. Virology, 1959. 8(3): p. 396-7.
83. Moore, G.E., R.E. Gerner, and H.A. Franklin, Culture of normal human leukocytes. Jama, 1967. 199(8): p. 519-24.
84. Ham, R.G., Clonal Growth of Mammalian Cells in a Chemically Defined, Synthetic Medium. Proc Natl Acad Sci U S A, 1965. 53: p. 288-93.
85. Morgan, M.J. and P. Faik, Carbohydrate metabolism in cultured animal cells. Biosci Rep, 1981. 1(9): p. 669-86.
86. Patterson, M.K., Uptake and utilization of amino acids by cell cultures. Growth, nutrition and metabolism of cells in culture. Vol. 1. 1972, New York: Academic Press.
87. Higuchi, K., Cultivation of animal cells in chemically defined media, a review. Adv Appl Microbiol, 1973. 16: p. 111-36.
88. Hutner, S.H., Inorganic nutrition. Annu Rev Microbiol, 1972. 26: p. 313-46.
89. Waymouth, C., Major ions, buffer systems, pH, osmolarity and water quality. In“The growth requirements of vertebrate cells in Vitro. 1981, London and New York: Cambridge Univ. Press.
90. Maranga, L., A.S. Coroadinha, and M.J. Carrondo, Insect cell culture medium supplementation with fetal bovine serum and bovine serum albumin: effects on baculovirus adsorption and infection kinetics. Biotechnol Prog, 2002. 18(4): p. 855-61.
91. Matilainen, H., et al., Baculovirus entry into human hepatoma cells. J Virol, 2005. 79(24): p. 15452-9.
92. Salminen, M., et al., Improvement in nuclear entry and transgene expression of baculoviruses by disintegration of microtubules in human hepatocytes. J Virol, 2005. 79(5): p. 2720-8.
93. Xiao, X., J. Li, and R.J. Samulski, Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol, 1996. 70(11): p. 8098-108.
94. Dai, Y., et al., Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantation in vivo. Proc Natl Acad Sci U S A, 1992. 89(22): p. 10892-5.
95. Hortelano, G., et al., Sustained and therapeutic delivery of factor IX in nude haemophilia B mice by encapsulated C2C12 myoblasts: concurrent tumourigenesis. Haemophilia, 2001. 7(2): p. 207-14.
96. Wolff, J.A., et al., Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet, 1992. 1(6): p. 363-9.
97. Duan, D., et al., Enhancement of muscle gene delivery with pseudotyped adeno-associated virus type 5 correlates with myoblast differentiation. J Virol, 2001. 75(16): p. 7662-71.
98. Huard, J., et al., The basal lamina is a physical barrier to herpes simplex virus-mediated gene delivery to mature muscle fibers. J Virol, 1996. 70(11): p. 8117-23.
99. Taylor, S.M. and P.A. Jones, Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell, 1979. 17(4): p. 771-9.
100. Grigoriadis, A.E., J.N. Heersche, and J.E. Aubin, Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol, 1988. 106(6): p. 2139-51.
101. Grigoriadis, A.E., J.N. Heersche, and J.E. Aubin, Continuously growing bipotential and monopotential myogenic, adipogenic, and chondrogenic subclones isolated from the multipotential RCJ 3.1 clonal cell line. Dev Biol, 1990. 142(2): p. 313-8.
102. Yamaguchi, A. and A.J. Kahn, Clonal osteogenic cell lines express myogenic and adipocytic developmental potential. Calcif Tissue Int, 1991. 49(3): p. 221-5.
103. Yamaguchi, A., Regulation of differentiation pathway of skeletal mesenchymal cells in cell lines by transforming growth factor-beta superfamily. Semin Cell Biol, 1995. 6(3): p. 165-73.
104. Owen, M., Marrow stromal stem cells. J Cell Sci Suppl, 1988. 10: p. 63-76.
105. Wlodarski, K.H., Properties and origin of osteoblasts. Clin Orthop Relat Res, 1990(252): p. 276-93.
106. Katagiri, T., et al., Bone morphogenetic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and myogenin. Exp Cell Res, 1997. 230(2): p. 342-51.
107. Yoshiko, Y., K. Hirao, and N. Maeda, Dexamethasone regulates the actions of endogenous insulin-like growth factor-II during myogenic differentiation. Life Sci, 1998. 63(2): p. 77-85.
108. De Angelis, L., et al., Inhibition of myogenesis by transforming growth factor beta is density-dependent and related to the translocation of transcription factor MEF2 to the cytoplasm. Proc Natl Acad Sci U S A, 1998. 95(21): p. 12358-63.
109. Layne, M.D. and S.R. Farmer, Tumor necrosis factor-alpha and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Exp Cell Res, 1999. 249(1): p. 177-87.
110. Smith, C.W., et al., Effects of IGF-I, IGF-II, bFGF and PDGF on the initiation of mRNA translation in C2C12 myoblasts and differentiating myoblasts. Tissue Cell, 1999. 31(4): p. 403-12.
111. Stockdale, F.E., Myogenic cell lineages. Dev Biol, 1992. 154(2): p. 284-98.
112. Horsley, V., et al., IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell, 2003. 113(4): p. 483-94.
113. Zhang, P., et al., p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev, 1999. 13(2): p. 213-24.
114. McKinsey, T.A., C.L. Zhang, and E.N. Olson, Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev, 2001. 11(5): p. 497-504.
115. Puri, P.L. and V. Sartorelli, Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J Cell Physiol, 2000. 185(2): p. 155-73.
116. Arnold, H.H. and B. Winter, Muscle differentiation: more complexity to the network of myogenic regulators. Curr Opin Genet Dev, 1998. 8(5): p. 539-44.
117. Yun, K. and B. Wold, Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol, 1996. 8(6): p. 877-89.
118. de la Serna, I.L., K.A. Carlson, and A.N. Imbalzano, Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet, 2001. 27(2): p. 187-90.
119. Weintraub, H., et al., The myoD gene family: nodal point during specification of the muscle cell lineage. Science, 1991. 251(4995): p. 761-6.
120. Olson, E.N., MyoD family: a paradigm for development? Genes Dev, 1990. 4(9): p. 1454-61.
121. Katagiri, T., et al., Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol, 1994. 127(6 Pt 1): p. 1755-66.
122. Okubo, Y., et al., Expression of bone morphogenetic protein-2 via adenoviral vector in C2C12 myoblasts induces differentiation into the osteoblast lineage. Biochem Biophys Res Commun, 1999. 262(3): p. 739-43.
123. Ho, Y.-C., Lee, H-P, Lo, W-H, Chen, H-C, Chung, C-K, Hwang, S-M, et al., Baculovirus transduction of human mesenchymal stem cell-derived progenitor cells: variation of transgene expression with cellular differentiation states., in gene Ther 2006.
124. Pieroni, L., D. Maione, and N. La Monica, In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum Gene Ther, 2001. 12(8): p. 871-81.
125. Quantin, B., et al., Adenovirus as an expression vector in muscle cells in vivo. Proc Natl Acad Sci U S A, 1992. 89(7): p. 2581-4.
126. Acsadi, G., et al., A differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity. Hum Mol Genet, 1994. 3(4): p. 579-84.