簡易檢索 / 詳目顯示

研究生: 馮忠彥
Feng, June-Yen
論文名稱: 十二分支金奈米顆粒合成與生長機構探討
Gold Nanostructure With Twelve Tips : Fabrication Route and Growth Mechanistic Investigations
指導教授: 黃國柱
口試委員: 鍾文聖
吳劍侯
黃國柱
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 104
中文關鍵詞: 金奈米結構表面增強拉曼散射生醫應用
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文研究中,我們利用自行合成之單十四烷基溴化鄰二氮菲做為合成奈米金顆粒之界面活性劑,且成功以此界面活性劑製備出12分支之奈米金顆粒。主要是以二十面體之對稱在頂點長出十二隻分支,且其邊角具有{711}高晶面,並觀察在不同的反應條件下,對多分支奈米金顆粒結構所造成的影響。推論出多分支奈米金顆粒可能的生長機制為小尺寸奈米顆粒成核後,聚集成孿生晶種,並且逐漸形成二十面體奈米金顆粒,並在界面活性劑模板的作用下,逐漸成長出十二分支。另外在表面增強拉曼散射之實驗,其訊號提升效果遠大於球狀金奈米粒子和金奈米棒,表示此多分支奈米顆粒結構為一可應用在表面增強拉曼散射實驗上之良好基材。總體而言,我們發展了一製備金奈米結構之新方法,且製備出之金奈米結構具有良好的近紅外光吸收及大幅提升拉曼訊號等特性,因此我們預期此材料在生醫應用上會有不錯的表現


    In this study, we synthesized a new tetradecylphenanthroline bromide based surfactant and further used it in the development of gold nanostructure with twelve tips and edges with {711} facet.
    In order to study the plausible mechanism of gold twelve tips nanostructure, we adopted different reaction conditions. Our results clearly show that, in the presence of tetradecylphenanthroline bromide surfactant and adsorbate can promote the formation of multi-twinned seeds grown into icosahedral structure. During the course of the reaction time, the growth of the gold atoms was facilitated through the vertices of icosahedral structure and finally promoting the formation of gold twelve tips nanostructure.
    The gold twelve tips nanostructure possess superior optical properties, such as, excellent and broad NIR absorption, higher extinction coefficients and “lightening rod” effect. Based on these properties, we performed Surface Enhanced Raman Scattering (SERS) application. On comparison to the spherical gold nanoparticle and gold nanorod (Au NRs), the SERS signal of gold twelve tip exhibited dramatic signal enhancement. Overall, our study has proposed a new method to fabricate gold nanostructure with superior optical and SERS properties, which explores its applications in the field of biomedicine.

    摘要 I ABSTRACT II 目錄 II 圖目錄 II 表目錄 II 第一章 緒論 1 1-1 奈米科技的基本概念 1 1-2 奈米微粒的特性 1 1-2-1 表面效應 2 1-2-2 量子尺寸效應 3 1-2-3 表面電漿共振效應 5 1-3 奈米材料的製備 6 1-3-1 物理方法 7 1-3-2 化學方法 9 1-4 金奈米結構 12 1-5 Stoke shift 19 1-6 拉曼散射光譜與表面增強拉曼光譜 20 1-6-1 拉曼散射光譜 20 1-6-2 表面增強拉曼光譜 23 1-7 研究動機與目的 25 第二章 實驗方法及原理 27 2-1 實驗藥品 27 2-2 實驗儀器 28 2-3 實驗步驟 29 2-3-2 使用十四烷基溴化鄰二氮菲做為保護劑合成12分支金奈米顆粒 30 2-3-2-1 12分支金奈米顆粒之製備 30 2-3-3 球型金奈米顆粒之製備. 31 2-3-4 奈米金棒之製備 31 2-4 表面增強拉曼散射測量 32 2-5 實驗流程 33 第三章 實驗結果與討論 34 3-1 界面活性劑之1H NMR圖譜鑑定 34 3-2 12分支金奈米顆粒之鑑定 39 3-3 不同反應條件下對金奈米平板成長的影響 53 3-3-1 在不同反應溫度下對於12分支金奈米顆粒成長之影響 53 3-3-2 調整界面活性劑濃度對12分支金奈米顆粒成長之影響 60 3-3-3 金前驅物濃度對於合成12分支金奈米顆粒之影響 67 3-3-4 銀離子濃度對於成長12分支金奈米顆粒之影響 73 3-4 在不同反應時間下的產物形態 82 3-5 12分支金奈米顆粒之生長機構推論 85 3-6 以氯化十四烷基鄰二氮菲合成金奈米顆粒 87 3-7 以C14TAB合成金奈米顆粒 89 3-8 12分支金奈米顆粒的穩定性測試 91 3-9 金奈米粒子之表面增強拉曼散射效應 93 3-10 測試十二分支金奈米顆粒之單重態氧氣放射 96 第四章 結論 99 參考文獻 101

    [1] J. D. Aiken III, R. G. Finke J. Mol. Catal. A 1999, 145
    [2] Ozin,G.A.; Arsenault,A.C.Nanochemistry: A Chemical Approach to Nanomaterials 2005.Royal Society of Chemistry, Cambridge, UK
    [3] 吳民耀, 劉威志, 物理雙月刊 2006, 28卷, 2期, 486
    [4] Katherine A. Willets and Richard P. Van Duyne.Annu. Rev. Phys. Chem. 2007. 58 267
    [5] G. Schmid, Clusters and Colloids From Theory to Applications 1994
    [6] Sang-Ha Hwang, Young-Bin Park, Kwan Han Yoon and Dae Suk Bang Nanotechnology and Nanomaterials 2011 953-307-497-9
    [7] 郭清癸, 黃俊傑, 牟中原, 物理雙月刊 2006, 23卷, 6期, 614
    [8] Y. Y. Wu, P. D. Yang, J. Am. Chem. Soc. 2001,123, 3165
    [9] Michelle L. Personick and Chad A. Mirkin J. Am. Chem. Soc. 2013, 135, 18238

    [10] Yujie Xiong and Younan Xia Adv. Mater. 2007, 19, 3385

    [11] Rongchao Jin, YunWei Cao, Chad A. Mirkin,, K. L. Kelly, George C. Schatz,J. G. Zheng Science 2001,294,1901
    [12] Jian Zhang, Mark R. Langille, and Chad A. Mirkin, Nano Lett. 2011, 11, 2495
    [13] Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, J. Phys. Chem. B 1997, 101, 6661.
    [14] Orazem ME, Pébère N and Tribollet B J.Electronchem.Soc 2006,153,129
    [15] Yue Tang and Wenlong Cheng Langmuir 2013, 29, 3125
    [16] Bhanu Neupane, Luyang Zhao, and Gufeng Wang ,Nano Lett. 2013, 13, 4087
    [17] Sandip Saha, Anjali Pal,Subrata ,Langmuir 2010, 26, 288
    [18] Jin Zhong Zhang J. Phys. Chem. Lett. 2010, 1, 686
    [19] Raviraj Vankayala,a Chien-Lin Kuo,a Arunachalam Sagadevan,a Po-Hung Chen, J. Mater. Chem. B, 2013, 1,4379
    [20] Yun Wang , Haimin Zhang , Xiangdong Yao , and Huijun Zhao,J. Phys. Chem.C , 2013 , 117,1672
    [21] B. Nikoobakht, M. A. El-Sayed, Langmuir 2001, 17, 6368.
    [22] J. X. Gao, C. M. Bender, C. J. Murphy, Langmuir 2003, 19, 9065
    [23] H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, M. H. Huang, Chemistry of Materials 2005, 17, 6447
    [24] Xingchen Ye1, Chen Zheng, Jun Chen1, Yuzhi Gao, Christopher B. Murray1, Nano Lett. 2013, 13, 765−771
    [25] Samuel E. Lohse and Catherine J. Murphy, Chem. Mater. 2013, 25, 1250
    [26](a) Daeha Seo, Choong Il Yoo, Im Sik Chung ,Seung Min Park, Seol Ryu,and Hyunjoon Song, J. Phys. Chem. C 2008, 112, 2469-2475
    (b) Miharu Eguchi, Daisuke Mitsui, Hsin-Lun Wu, Ryota Sato, Toshiharu Teranishi Langmuir, 2012, 28 9021–9026

    [27] H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir 2008, 24, 5233.

    [28] H.-L. Wu, C.-H. Kuo, M. H. Huang, Langmuir 2010, 26, 12307.

    [29] Michelle L. Personick, Mark R. Langille, Jinsong Wu, and Chad A. Mirkin,J. Am. Chem. Soc. 2013, 135 3800
    [30] Akrajas Ali Umar and Munetaka Oyama ,Crystal Growth & Design, 9, 2, 2009
    [31] O. M. Bakr, B. H. Wunsch, F. Stellacci, Chemistry of Materials 2006, 18, 3297.
    [32] Do Youb Kim, Taekyung Yu, Eun Chul Cho, Yanyun Ma, O Ok Park, and Younan Xia ,Angew. Chem. Int. Ed. 2011, 50, 6328

    [33] http://en.wikipedia.org/wiki/George_Gabriel_Stokes
    [34] M. Born, “Principles of Optics” 1980
    [35] A. D. McFarland, C. L. Haynes, C. A. Mirkin, R. P. Van Duyne and H. A. Godwin,J. Chem. Educ. 2004 81 544
    [36] Lin-Fei Zhang, Sheng-Liang Zhong, An-Wu Xu,Angew. Chem. Int. Ed. 2013, 52, 645
    [37] C. H. Kuo, M. H. Huang, Langmuir 2005, 21, 2012
    [38] O. M. Magnussen, chem rev 2002.102.679
    [39] N. R. Jana, L. Gearheart, C. J. Murphy, Advanced Materials 2001, 13, 1389
    [40] Mark R. Langille, Michelle L. Personick, Jian Zhang, and Chad A. Mirkin ,J. Am. Chem. Soc. 2012, 134, 14542
    [41] A. Pal, A. E. Beezer, J. C. Mitchell, Langmuir 1998, 14, 4724
    [42] M. Z. Liu, P. Guyot-Sionnest, J. Phys. Chem.B 2005, 109, 22192
    [43] Michelle L. Personick, Mark R. Langille, Jian Zhang, and Chad A. Mirkin, Nano Lett., 2011, 11 3394
    [44] rikanth Patala, Laurence D. Marks, and Monica Olvera de la Cruz ,J. Phys. Chem. C, 2013, 117 1485
    [45] Wenfeng Jia , Jinru Li , and Long Jiang ACS Appl. Mater. Interfaces, 2013, 5 6886
    [46] Christopher J. Johnson, Erik Dujardin, Sean A. Davis, Catherine J. Murphy and Stephen Mann,J. Mater. Chem 2002,12 1765
    [47] Shaojun Guo, Shaojun Dong, and Erkang Wang ,Crystal Growth & Design, 8, 10, 2008
    [48] Hao Ming Chen, Ru-Shi Liu, and Din Ping Tsai ,Crystal Growth & Design, Vol. 9, No. 5, 2009
    [49] Mukul Pradhan, Joydeep Chowdhury, Sougata Sarkar, Arun Kumar Sinha, and Tarasankar Pal,J. Phys. Chem. C, 2012, 116 24301
    [50] MANIU, V. CHIS, M. BAIA, F. TODERAS, S. ASTILEAN ,JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS 9, 2007, 733

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE