研究生: |
吳俊明 Jiun-Ming Wu |
---|---|
論文名稱: |
天然抗菌胜肽 Cecropin B及其衍生物之功能與結構探討 Functional and Structural Studies of Natural Antimicrobial Peptide Cecropin B and its Derivatives |
指導教授: |
程家維
Jya-Wei Cheng 陳惠民 Hueih Min Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 91 |
中文關鍵詞: | 抗菌胜肽 、脂膜通透性 、脂膜融合 、核磁共振光譜學 、圓二色光譜 、抗癌胜肽 、肝素結合位置 、螺旋-鉸鏈-螺旋 |
外文關鍵詞: | antimicrobial peptide, membrane permeability, membrane fusion, NMR spectroscopy, circular dichroism, anticancer peptide, heparin-binding motif, helix-hinge-helix |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Cecropin B (CB)是一個從天蠶(Hyalophora cecropia) 血淋巴液分離出來的天然抗菌胜肽,由35個氨基酸組成,CB對於細菌具有廣泛的毒殺能力,但其對於人體紅血球細胞並不具有強烈的細胞溶破能力,圓二色光譜(circular dichroism, CD)的實驗結果顯示,CB在水溶液中為無序纏捲(random coil)的狀態,但是在極性溶劑中會轉換成alpha-螺旋,利用核磁共振光譜學的技術,研究CB在20% HFIP溶液中的立體結構,其由兩段alpha-螺旋(殘基 4-21 和 殘基25-34)所組成,中間由一個脯氨酸扭結(proline kink) (殘基22-24)連接。為了仔細分析研究CB,合成了截斷型的短胜肽CB-N27 (殘基 1-27) 和 CB-C17 (殘基 19-35),並研究其脂膜的通透性、融合效應與抗菌活性,此兩種截斷型的胜肽都不具有抗菌作用,最小抑制濃度的抗菌測試實驗都顯示其損失了原有的抗菌能力,顯示適當的胜肽長度對於CB的抗菌能力是必須的。另一個CB衍生物CB1,是由CB將C端的部分,以N端序列取代所組成,CB1的多正電荷特性使其保留了抗菌能力,而CB 之N端序列的多正電荷(polycationic)與兩面性(amphipathic)的特性,有助於其抗菌活性,此外,CB-N27 和 CB-C17 的溶破脂膜特性、脂質混合能力、抗菌能力都下降,代表適當的長度的CB,不論是N端帶正電序列以及C端斥水性的部分,對於CB的功能來說都是重要的,而CB的螺旋-鉸鏈-螺旋(helix-hinge-helix)式的結構,讓CB兩段alpha-螺旋有可彎曲性,促進與脂膜的互動作用。
幾種天然的抗菌胜肽,包括 cecropins、magainins和melittins,都被發現具有殺死癌細胞的特性,然而這些胜肽的功效並不一定適合發展成對抗癌細胞的藥劑,我們的研究裡,利用天然抗菌胜肽CB當做模版,製造新穎的抗癌胜肽。cecropin 家族裡的一致序列模式為W-x(0,2)-[KDN]-x-{L}-K-[KRE]-[LI]-E-[RKN] (PROSITE資料庫編號:PS00268) ,而此特徵段序列就是對應在CB的N端,我們將此特徵序列重複三次,並在C端夾入一個鉸鏈(hinge),成為一個新的胜肽命名為CB1a,CB1a 在水溶液中並無構形,但在類似脂膜的環境中可以形成alpha-螺旋,而CB1a 溶在有機極性溶劑的立體結構也以核磁共振光譜技術進行研究,CB1a在20% HFIP 溶液中,其結構為 螺旋-鉸鏈-螺旋 (helix – hinge - helix)的形式,而兩段螺旋片端中間的夾角約為 60~110度,在CB1a第一段螺旋結構的中間部位,有一個肝素結合位置 (heparin- binding motif),恆溫熱卡計(isothermal titration calorimetry) 的實驗結果顯示, CB1a 在生理鹽度和25°C的環境下,與低分子量肝素的結合常數為1.66×105 M-1 ,CB1a 與肝素結合之後,造成很大的構形轉變,CB1a變的傾向於有二級結構的狀態。CB1a 對於幾株癌細胞展露出其具有發展前景的抗癌活性,但對於非癌細胞(non-cancer cells)的毒性卻是相對輕微,CB1a 對白血病與胃癌細胞的抑制濃度 IC50,大概低於CB的抑制濃度 2到8倍,此外,CB1a對於人類紅血球的溶血效應相當低,這些特性使得CB1a 可以被當作一個好的抗癌候選藥物。
Cecropin B (CB) is a 35-residue natural antimicrobial peptide isolated from the immune hemolymph of Hyalophora cecropia. CB shows a broad spectrum of activity against bacteria but has little cytolytic effect. CD measurements revealed that CB adopts random structure in aqueous solution but form helical conformation in polar solvent. The solution structure of CB in 20% HFIP was studied by using NMR spectroscopy. It consists of two amphipathic alpha-helices (residues 4-21 and 25-34) connected by a proline kink region (residues 22-24). In order to undertake the structural dissection of CB, CB-N27 (residues 1-27) and CB-C17 (residues 19-35) were synthesized to investigate the membrane permeabilities, fusogenic effect, and antimicrobial activities. The MIC test the two truncated form of CB both loss its antibacterial activity, suggesting the adequate peptide length of the CB is required in its antimicrobial function. CB1 was constructed by replacing the C-terminal segment with N-terminal sequence of CB, the polycationic property of CB1 make it restored the antimicrobial activity. The N-terminal polycationic and amphipathic sequence may contribute to antimicrobial activity. Furthermore CB-N27 and CB-C17 both inhibited membrane lysis, lipid mixing, and antibacterial activity. Suggesting that the optimal length of N-terminal positively charged residues and C-terminal hydrophobic segment are critical factors for its functions. The helix-hinge-helix structure of CB provides the flexibility for its two □-helices and facilitates the interactions to lipid membrane.
Several natural antimicrobial peptides including cecropins, magainins and melittins have been found to kill cancer cells. However, their efficacy may not be adequate for their development as anticancer agents. In this study, we used a natural antimicrobial peptide, cecropin B (CB), as a template to generate a novel anticancer peptide. The consensus pattern of cecropins is W-x(0,2)-[KDN]-x-{L}-K-[KRE]-[LI]-E-[RKN] (PROSITE: PS00268), and this signature sequence is located at N-terminus of CB. CB1a was constructed by repeating the signature sequence of CB three times and including a hinge near C-terminus. The circular dichroism spectra show that CB1a is unstructured in aqueous solution, but adopt a helical conformation in membrane-like environment. The solution structure of CB1a in polar solvent was also studied by NMR. CB1a formed a helix-hinge-helix in 20 % HFIP solution, and the bent angle between two helical segments was ranging from 60° to 110°. A heparin-binding motif is located in the central part of helix 1. Isothermal titration calorimetry reveals the association constant of CB1a bound to low molecular weight heparin is 1.66×105 M-1 at physiological ionic strength at 25°C. Binding of CB1a to heparin produces a large conformational change toward a more structural state. CB1a demonstrated promising activity against several cancer cells with low toxicity to the non-cancer cells. The IC50 of CB1a on leukemia and stomach carcinoma cells were in the range of 2- to 8-fold lower than those of CB. Besides, CB1a displayed low hemolytic property on human red blood cell. These properties might make CB1a a good candidate for use as an anticancer agent.
References
1 Boman,H.G., Wade,D., Boman,I.A., Wahlin,B., & Merrifield,R.B. (1989) Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett. 259, 103-106.
2 Hultmark,D., Steiner,H., Rasmuson,T., & Boman,H.G. (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 7-16.
3 Hultmark,D., Engstrom,A., Bennich,H., Kapur,R., & Boman,H.G. (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem. 127, 207-217.
4 Boman,H.G. & Steiner,H. (1981) Humoral immunity in Cecropia pupae. Curr. Top. Microbiol. Immunol. 94-95, 75-91.
5 Boman,H.G. & Hultmark,D. (1981) Cell-Free Immunity in Insects. Trends in Biochemical Sciences 6, 306-309.
6 Fink,J., Merrifield,R.B., Boman,A., & Boman,H.G. (1989) The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity. J. Biol. Chem. 264, 6260-6267.
7 Steiner,H., Hultmark,D., Engstrom,A., Bennich,H., & Boman,H.G. (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246-248.
8 van Hofsten,P., Faye,I., Kockum,K., Lee,J.Y., Xanthopoulos,K.G., Boman,I.A., Boman,H.G., Engstrom,A., Andreu,D., & Merrifield,R.B. (1985) Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia. Proc. Natl. Acad. Sci. U. S. A 82, 2240-2243.
9 De Lucca,A.J., Bland,J.M., Jacks,T.J., Grimm,C., & Walsh,T.J. (1998) Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Med. Mycol. 36, 291-298.
10 Holak,T.A., Engstrom,A., Kraulis,P.J., Lindeberg,G., Bennich,H., Jones,T.A., Gronenborn,A.M., & Clore,G.M. (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27, 7620-7629.
11 Sipos,D., Andersson,M., & Ehrenberg,A. (1992) The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. Eur. J. Biochem. 209, 163-169.
12 Sipos,D., Chandrasekhar,K., Arvidsson,K., Engstrom,A., & Ehrenberg,A. (1991) Two-dimensional proton-NMR studies on a hybrid peptide between cecropin A and melittin. Resonance assignments and secondary structure. Eur. J. Biochem. 199, 285-291.
13 Srisailam,S., Arunkumar,A.I., Wang,W., Yu,C., & Chen,H.M. (2000) Conformational study of a custom antibacterial peptide cecropin B1: implications of the lytic activity. Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology 1479, 275-285.
14 Srisailam,S., Kumar,T.K.S., Arunkumar,A.I., Leung,K.W., Yu,C., & Chen,H.M. (2001) Crumpled structure of the custom hydrophobic lytic peptide cecropin B3. European Journal of Biochemistry 268, 4278-4284.
15 Steiner,H. (1982) Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. FEBS Lett. 137, 283-287.
16 Oren,Z. & Shai,Y. (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47, 451-463.
17 Zasloff,M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.
18 Ye,J.S., Zheng,X.J., Leung,K.W., Chen,H.M., & Sheu,F.S. (2004) Induction of transient ion channel-like pores in a cancer cell by antibiotic Peptide. J. Biochem. (Tokyo) 136, 255-259.
19 Christensen,B., Fink,J., Merrifield,R.B., & Mauzerall,D. (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. U. S. A 85, 5072-5076.
20 Wang,W., Smith,D.K., & Chen,H.M. (1999) The effect of pH on the structure, binding and model membrane lysis by cecropin B and analogs. Biochimica et Biophysica Acta-General Subjects 1473, 418-430.
21 Chen,H.M., Clayton,A.H., Wang,W., & Sawyer,W.H. (2001) Kinetics of membrane lysis by custom lytic peptides and peptide orientations in membrane. Eur. J. Biochem. 268, 1659-1669.
22 Chen,H.M., Leung,K.W., Thakur,N.N., Tan,A., & Jack,R.W. (2003) Distinguishing between different pathways of bilayer disruption by the related antimicrobial peptides cecropin B, B1 and B3. Eur. J. Biochem. 270, 911-920.
23 Wang,W., Smith,D.K., Moulding,K., & Chen,H.M. (1998) The dependence of membrane permeability by the antibacterial peptide cecropin B and its analogs, CB-1 and CB-3, on liposomes of different composition. Journal of Biological Chemistry 273, 27438-27448.
24 Tieleman,D.P., Shrivastava,I.H., Ulmschneider,M.R., & Sansom,M.S. (2001) Proline-induced hinges in transmembrane helices: possible roles in ion channel gating. Proteins 44, 63-72.
25 Chang,D.K., Cheng,S.F., Trivedi,V.D., & Lin,K.L. (1999) Proline affects oligomerization of a coiled coil by inducing a kink in a long helix. J. Struct. Biol. 128, 270-279.
26 Matsuzaki,K., Yoneyama,S., & Miyajima,K. (1997) Pore formation and translocation of melittin. Biophys. J. 73, 831-838.
27 Park,C.B., Yi,K.S., Matsuzaki,K., Kim,M.S., & Kim,S.C. (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. U. S. A 97, 8245-8250.
28 Park,C.B., Kim,H.S., & Kim,S.C. (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244, 253-257.
29 Lee,K., Shin,S.Y., Kim,K., Lim,S.S., Hahm,K.S., & Kim,Y. (2004) Antibiotic activity and structural analysis of the scorpion-derived antimicrobial peptide IsCT and its analogs. Biochem. Biophys. Res. Commun. 323, 712-719.
30 Lee,S.A., Kim,Y.K., Lim,S.S., Zhu,W.L., Ko,H., Shin,S.Y., Hahm,K.S., & Kim,Y. (2007) Solution Structure and Cell Selectivity of Piscidin 1 and Its Analogues(,). Biochemistry 46, 3653-3663.
31 Oh,D., Shin,S.Y., Lee,S., Kang,J.H., Kim,S.D., Ryu,P.D., Hahm,K.S., & Kim,Y. (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry 39, 11855-11864.
32 Hope,M.J., Bally,M.B., Webb,G., & Cullis,P.R. (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta. 812, 55-56.
33 Mayer,L.D., Hope,M.J., & Cullis,P.R. (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta. 858, 161-168.
34 Duzgunes,N., Allen,T.M., Fedor,J., & Papahadjopoulos,D. (1987) Lipid mixing during membrane aggregation and fusion: why fusion assays disagree. Biochemistry 26, 8435-8442.
35 Struck,D.K., Hoekstra,D., & Pagano,R.E. (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20, 4093-4099.
36 Marion,D. & Wuthrich,K. (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113, 967-974.
37 Rance,M., Sorensen,O.W., Bodenhausen,G., Wagner,G., Ernst,R.R., & Wuthrich,K. (1983) Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem. Biophys. Res. Commun. 117, 479-485.
38 Bax,A. & Davis,D.G. (1985) MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65, 355-360.
39 Schwieters,C.D., Kuszewski,J.J., Tjandra,N., & Clore,G.M. (2003) The Xplor-NIH NMR molecular structure determination package. J. Magn Reson. 160, 65-73.
40 Koradi,R., Billeter,M., & Wuthrich,K. (1996) MOLMOL: A program for display and analysis of macromolecular structures. Journal of Molecular Graphics 14, 51-55.
41 Laskowski,R.A., Rullmann,J.A.C., MacArthur,M.W., Kaptein,R., & Thornton,J.M. (1996) AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular Nmr 8, 477-486.
42 Maloy,W.L. & Kari,U.P. (1995) Structure-activity studies on magainins and other host defense peptides. Biopolymers 37, 105-122.
43 Bechinger,B. (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156, 197-211.
44 Wishart,D.S. & Sykes,B.D. (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171-180.
45 Ryan,M.A., Qi,X., Serrano,A.G., Ikegami,M., Perez-Gil,J., Johansson,J., & Weaver,T.E. (2005) Mapping and analysis of the lytic and fusogenic domains of surfactant protein B. Biochemistry 44, 861-872.
46 Ryan,M.A., Akinbi,H.T., Serrano,A.G., Perez-Gil,J., Wu,H., McCormack,F.X., & Weaver,T.E. (2006) Antimicrobial activity of native and synthetic surfactant protein B peptides. J. Immunol. 176, 416-425.
47 Hancock,R.E. (2000) Cationic antimicrobial peptides: towards clinical applications. Expert. Opin. Investig. Drugs 9, 1723-1729.
48 Hancock,R.E. & Patrzykat,A. (2002) Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug Targets Infect. Disord. 2, 79-83.
49 Hancock,R.E. (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1, 156-164.
50 Hancock,R.E. & Chapple,D.S. (1999) Peptide antibiotics. Antimicrob. Agents Chemother. 43, 1317-1323.
51 Lehrer,R.I. & Ganz,T. (1999) Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11, 23-27.
52 Chen,H.M., Wang,W., Smith,D., & Chan,S.C. (1997) Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim. Biophys. Acta 1336, 171-179.
53 Zasloff,M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. U. S. A 84, 5449-5453.
54 Cruciani,R.A., Barker,J.L., Zasloff,M., Chen,H.C., & Colamonici,O. (1991) Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc. Natl. Acad. Sci. U. S. A 88, 3792-3796.
55 Ohsaki,Y., Gazdar,A.F., Chen,H.C., & Johnson,B.E. (1992) Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res. 52, 3534-3538.
56 Baker,M.A., Maloy,W.L., Zasloff,M., & Jacob,L.S. (1993) Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 53, 3052-3057.
57 Sharma,S.V. (1992) Melittin resistance: a counterselection for ras transformation. Oncogene 7, 193-201.
58 Sharma,S.V. (1993) Melittin-induced hyperactivation of phospholipase A2 activity and calcium influx in ras-transformed cells. Oncogene 8, 939-947.
59 Frohm,M., Agerberth,B., Ahangari,G., Stahle-Backdahl,M., Liden,S., Wigzell,H., & Gudmundsson,G.H. (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem. 272, 15258-15263.
60 Johansson,J., Gudmundsson,G.H., Rottenberg,M.E., Berndt,K.D., & Agerberth,B. (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem. 273, 3718-3724.
61 Wang,W., Smith,D.K., Moulding,K., & Chen,H.M. (1998) The dependence of membrane permeability by the antibacterial peptide cecropin B and its analogs, CB-1 and CB-3, on liposomes of different composition. Journal of Biological Chemistry 273, 27438-27448.
62 Sreerama,N. & Woody,R.W. (2004) On the analysis of membrane protein circular dichroism spectra. Protein Sci. 13, 100-112.
63 Sreerama,N. & Woody,R.W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252-260.
64 Wiseman,T., Williston,S., Brandts,J.F., & Lin,L.N. (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131-137.
65 Richard,J.P., Melikov,K., Vives,E., Ramos,C., Verbeure,B., Gait,M.J., Chernomordik,L.V., & Lebleu,B. (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585-590.
66 Henriques,S.T., Melo,M.N., & Castanho,M.A. (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem. J. 399, 1-7.
67 Sigrist,C.J., Cerutti,L., Hulo,N., Gattiker,A., Falquet,L., Pagni,M., Bairoch,A., & Bucher,P. (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief. Bioinform. 3, 265-274.
68 Falquet,L., Pagni,M., Bucher,P., Hulo,N., Sigrist,C.J., Hofmann,K., & Bairoch,A. (2002) The PROSITE database, its status in 2002. Nucleic Acids Res. 30, 235-238.
69 Bucher,P. & Bairoch,A. (1994) A generalized profile syntax for biomolecular sequence motifs and its function in automatic sequence interpretation. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 53-61.
70 Goncalves,E., Kitas,E., & Seelig,J. (2006) Structural and thermodynamic aspects of the interaction between heparan sulfate and analogues of melittin. Biochemistry 45, 3086-3094.
71 Hileman,R.E., Fromm,J.R., Weiler,J.M., & Linhardt,R.J. (1998) Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20, 156-167.
72 Capila,I. & Linhardt,R.J. (2002) Heparin-protein interactions. Angew. Chem. Int. Ed Engl. 41, 391-412.
73 Cardin,A.D. & Weintraub,H.J. (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9, 21-32.
74 Tyagi,M., Rusnati,M., Presta,M., & Giacca,M. (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J. Biol. Chem. 276, 3254-3261.
75 Fuchs,S.M. & Raines,R.T. (2004) Pathway for polyarginine entry into mammalian cells. Biochemistry 43, 2438-2444.
76 Ghiselli,R., Giacometti,A., Cirioni,O., Mocchegiani,F., Orlando,F., D'Amato,G., Sisti,V., Scalise,G., & Saba,V. (2004) Cecropin B enhances betalactams activities in experimental rat models of gram-negative septic shock. Ann. Surg. 239, 251-256.
77 Papo,N. & Shai,Y. (2005) Host defense peptides as new weapons in cancer treatment. Cmls-Cellular and Molecular Life Sciences 62, 784-790.
78 Papo,N. & Shai,Y. (2003) New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 42, 9346-9354.
79 Andersson,E., Rydengard,V., Sonesson,A., Morgelin,M., Bjorck,L., & Schmidtchen,A. (2004) Antimicrobial activities of heparin-binding peptides. Eur. J. Biochem. 271, 1219-1226.
80 Schiffer,M. & Edmundson,A.B. (1967) Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys. J. 7, 121-135.
81 Andreu,D., Merrifield,R.B., Steiner,H., & Boman,H.G. (1985) N-terminal analogues of cecropin A: synthesis, antibacterial activity, and conformational properties. Biochemistry 24, 1683-1688.
82 Wang,Z. & Wang,G. (2004) APD: the Antimicrobial Peptide Database. Nucleic Acids Res. 32, D590-D592.
83 Jenssen,H., Hamill,P., & Hancock,R.E. (2006) Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491-511.
84 Putsep,K., Branden,C.I., Boman,H.G., & Normark,S. (1999) Antibacterial peptide from H. pylori. Nature 398, 671-672.
85 Putsep,K., Normark,S., & Boman,H.G. (1999) The origin of cecropins; implications from synthetic peptides derived from ribosomal protein L1. FEBS Lett. 451, 249-252.
86 Lee,D.G., Hahm,K.S., Park,Y., Kim,H.Y., Lee,W., Lim,S.C., Seo,Y.K., & Choi,C.H. (2005) Functional and structural characteristics of anticancer peptide Pep27 analogues. Cancer Cell Int. 5, 21.
87 Papo,N., Shahar,M., Eisenbach,L., & Shai,Y. (2003) A novel lytic peptide composed of DL-Amino acids selectively kills cancer cells in culture and in mice. Journal of Biological Chemistry 278, 21018-21023.
88 Ellerby,H.M., Lee,S., Ellerby,L.M., Chen,S., Kiyota,T., del Rio,G., Sugihara,G., Sun,Y., Bredesen,D.E., Arap,W., & Pasqualini,R. (2003) An artificially designed pore-forming protein with anti-tumor effects. J. Biol. Chem. 278, 35311-35316.
89 Hui,L., Leung,K., & Chen,H.M. (2002) The combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cells. Anticancer Res. 22, 2811-2816.