研究生: |
黃健倫 Huang, Jian Lun |
---|---|
論文名稱: |
核電廠事故預警及辨識之研究 Identification and Early Warning for Nuclear Power Plant Accidents |
指導教授: |
周懷樸
Chou, Hwai Pwu |
口試委員: |
吳順吉
Wu, Shun Chi 白寶實 Pei, Bau Shei 黃建華 Wong, Kin W. |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 預警系統 、嚴重事故 、查找表 、圍阻體事件樹 、安全參數顯示系統 、電廠損害狀態 |
外文關鍵詞: | Early Warning System, Severe Accident, Look-up-table, Containment Event Tree, Safety Parameter Display System, Plant Damage States |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了能有效地預防及減緩核電廠的嚴重事故 (severe accident),在意外發生的早期,識別電廠的狀態是非常重要的,而此研究的主要目的是運用人工智能的方法來檢查警訊及電廠狀態和辨識出可能發生的肇始事件。
龍門核電廠 (Lungmen Nuclear Power Station, LNPS) ─台灣第四座核能電廠且為台灣第一座進步型沸水式反應器,被選為本研究的目標電廠,用其全域模擬器 (3keymaster)來產生測試資料,以利幫助研究方法之建立。本研究考慮了許多肇始事件,像是大中小破口的喪失冷卻水事故(Loss of Coolant Accidents)、喪失全飼水事故(Loss of all Feedwater)、全部的主蒸汽隔離閥關閉(Closure of all Main Steam Isolation Valves)、全再循環泵跳脫(Trip of all Recirculation Pump)、喪失冷凝器真空(Loss of Condenser Vacuum)等,建立了一個時間依賴性的查找表 (Look-up-table),並發展圖形辨識理論來快速地追蹤電廠狀態,所建立的系統將作為一個預警工具,幫助運轉員並以結合圍阻體事件樹(Containment Event Tree, CET) 的方式來減緩嚴重事故的發生。
To prevent and mitigate an accident in nuclear power plant (NPP), it is important to identify the plant condition during the early stage of an accident. This research uses artificial intelligence techniques to check out the alarm status and to identify possible events.
The Taiwan's Lungmen nuclear power station (LNPS), which is an advanced boiling water reactor (ABWR), is chosen as the target plant for the current study. A full scope engineering simulator is used to generate the testing data for method development. The following initiating events are considered in this study: small and large loss of coolant accidents (LOCAs), loss of feedwater events, closure of all main steam isolation valves, trip of all recirculation pumps, and loss of condenser vacuum. A time dependent look-up-table is established for each possible event. A pattern recognition algorithm is developed for fast tracking of the plant status. The developed algorithm is to serve as an early warning tool and to assist operator in cooperate with Containment Event Tree (CET) for mitigation of accidents.
References
[1] Y. G. No,J. H. Kim,M. G. Na,D. H. Lim, And K. I. Ahn,“Monitoring Severe Accidents Using Ai Techniques”, Nuclear Engineering And Technology, vol.44, pp. 393-400, 2012.
[2] 蕭德勇,「壓水式反應器暫態辨識研究」,國立清華大學,博士論文,2011.
[3] Santosh G. Vinod, A.K. Babar, H.S. Kushwaha, V. Venkat Raj, “Symptom based diagnostic system for nuclear power plant operations using artificial neural networks” , Reliability Engineering and System Safety, vol. 82, pp.33–40.
[4] M. G. Na, S. M. Lee, S. H. Shin, D. W. Jung, S. P. Kim, J. H. Jeong, and B. C. Lee, “Prediction of major transient scenarios for severe accidents of nuclear power plants,” IEEE Trans. Nucl. Sci., vol. 51, 2004, pp. 313-321.
[5] Kwang-Il Ahn, “Development of a risk-informed accident diagnosis and prognosis system to support severe accident management”, Nuclear Engineering and Design, vol. 239, Issue 10, 2009, pp. 2119–2133.
[6] H. S. Chang, K. S. Kang & S. H. Chang, “Development of severe accident management supporting systems using quantified containment event trees”, Reliability Engineering & System Safety, vol. 48, Issue 3, 1995, pp. 205–216.
[7] Chin Mao Lee, W. C. Tsai, K. W. Wong & T. Pang, “Simulator for The New Generation of Nuclear Power Plants – the Lungmen ABWR Simulator”, American Nuclear Society, LaGrange Park, IL, Knoxville, Tennessee, 2009.
[8] International Atomic Energy Agency, Vienna, “Severe Accident Management Programmes For Nuclear Power Plants”, IAEA, Safety Standards Series No. Ns-G-2.15, 2009.
[9] Taiwan Power Company, “Final Safety Analysis Report for Lungmen Nuclear Power Station”, chapter 6, chapter 15, 2007.