研究生: |
詹昕翰 Chan, Hsin-Han |
---|---|
論文名稱: |
使用薩格納克干涉儀與壓電陶瓷的光纖脈衝雷射之研究 Study of Fiber Pulse Laser Using Sagnac Interferometer With PZT |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
施宙聰
Shy, Jow-Tsong 潘犀靈 Pan, Ci-Ling |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 薩格納克干涉儀 、脈衝雷射 |
外文關鍵詞: | Sagnac, Pulse Laser |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中我們使用一般線型光纖雷射共振腔為主軸,將其共振腔加入薩格納克(Sagnac)干涉儀與壓電陶瓷(PZT),利用兩者特性產生週期性損耗來達到主動鎖模進而產生脈衝,並藉由改變整個共振腔長度來達到調整光脈衝週期的效果。在本研究中,我們產生22μs、44μs、88μs週期的光脈衝,也比較了訊號產生器給的方波訊號與正弦波訊號對於光脈衝的影響,最後探討環境對於此架構的影響,分別做了光纖脈衝對聲音、溫度、拍擊干擾時的表現。
In this paper, we incorporate a Sagnac interferometer and a PZT in a fiber-optic linear-type laser cavity. We use the Sagnac interferometer and the PZT to generate periodic cavity loss and active mode-locking, and then generate pulses. We modify the length of the Sagnac interferometer to adjust the period of the optical pulse train, in generating optical pulses of several hundred nanoseconds in width. We then compare the influence of the square wave signal and the sine wave signal given by the signal generator on the light pulse. Finally, a discussion on the influence of the environment, which includes the sound, temperature and vibration, on pulse generation is given.
[1] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, vol.15, pp.1263–1275, 1997.
[2] C. A. Brackett, “Dense wavelength division multiplexing networks: Principles and applications,” IEEE Journal on Selected Areas in Communications, vol.8, pp.1-3, 1990.
[3] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on WDM passive optical network,” Journal of Lightwave Technology vol.22, pp.2582–2590, 2004.
[4] H. A. Macleod, “ Thin-Film Optical Filters,” Adam Hilger Bristol, UK, 1986.
[5] A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Applied Physics Letters, vol.70, no.1, pp.19-21, 1997.
[6] H. Liang, Y. Jin, Y. Zhao, and J. Wang, “Twist sensor by using a pressure-induced birefringence single mode fiber based Sagnac interferometer,” Asia Communication and Photonics Conference, vol.8311, 83112H, 2011.
[7] J. Wang, C. Shen, Y. Lu, D. Chen, and C. Zhong, “Liquid Refractive Index Sensor Based on a Polarization-Maintaining Fiber Loop Mirreo,” IEEE Sensor Journal, vol.13, no.5, pp.1721-1724, 2013.
[8] T. Wang, C. Luo, and S. Zheng, “A fiber-optic current sensor based on a differentiating Sagnac interferometer,” IEEE Transactions on Instrumentation and Measurement, vol.50, no.3, pp.705-708, 2001.
[9] Y. J. Rao, “In-fibre Bragg grating sensors,” Measurement Science and Technology, vol.8, no.4, pp.355-373, 1997.
[10] L. Zhao and X. Huang, “Integrated condition monitoring system of transmission lines based on fiber bragg grating sensor,” International Conference on Condition Monitoring and Diagnosis, pp.667-670, 2016.
[11] W. Liu, M. Li, C. Wang, and J. Yao, “Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression with improved resolution and signal-to-noise ratio,” Journal of Lightwave Technology, vol29, no.9, pp.1239-1247, 2011.
[12] M. Aktas,, T. Akgun, M. U. Demircin, and D. Buyukaydin, “Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications,” Fiber Optic Sensors and Applications XIV, vol.10208, pp.1-17, 2017.
[13] Y. Tong, Z. Li, J. Wang,, and C. Zhang, “Improved distributed optical fiber vibration sensor based on Mach-Zehnder-OTDR,” Science and Innovations, JW2A-16, 2017.
[14] F. Zhu, Y. Zhang, L. Xia, X. Wu, and X. Zhang, “Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array,” Journal of Lightwave Technology, vol.33, no.23, pp.4775-4780, 2015.
[15] Y. Kaneda, C. Spiegelberg, J. Geng, Y. Hu, T. Luo, and S. Jiang, “200mW, narrow-linewidth 1064.2nm Yb-doped fiber laser,” Optical Society of America Conference on Lasers and Electro-optics, 2004.
[16] B. Wu, Y. Liu and Z Dai, “Narrow linewidth fiber grating FP cavity laser and application,” IEEE international Conference on Communications, Circuits and Systems Proceeding, vol.3, pp.1971-1974, 2006.
[17] X. Fang, “Fiber-optic distributed sensing by a two-loop Sagnac interferometer,” Optics Letters, vol.21, no.6, pp.444–446, 1996.
[18] Z. Jie, Y. Ping, Z. Haitao, W. Dongsheng, and G. Mali, “All-fiber mode-locked ring laser with a Sagnac filter,” IEEE Photonic Technology Letters, vol.23, no.18, pp.1301–1303, 2011.
[19] S. M. Zhang, F. Y. Lu, and J. Wang, “All‐fiber actively Q‐switched Er3+/Yb3+ co‐doped ring laser,” Microwave and Optical Technology Letters, vol.49, no.9, pp.2183-2186, 2007.
[20] D. W. Hewak, et al., “Quantum-Efficiency of Prasedymium Doped Ga:La:S Glass for 1.3 pm Optical Fiber Amplifiers,” IEEE Photonic Technol Letters, vol.6, no.5, pp.609-612, 1994.
[21] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE Journal Quantum Electronics, vol.30, pp.1817–1830, 1994.
[22] H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, “1.58-um band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,” IEEE Journal of Lightwave Technology, vol.17, no.3, pp.490-496, 1999.
[23] G. P. Agrawal, Fiber-optic communication systems, John Wiley and Sons, 2012.
[24] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifers,” Journal of Lightwave Technology, vol.9, 1991.
[25] A. Bjarklev, Optical fiber amplifiers: Design and system applications, Artech House, Inc, 1993.
[26] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol.3, no.4, pp.991-1007, 1997.
[27] M. J. F. Digonnet, Rare Earth-Doped Fiber Lasers and Amplifiers, Marcel Dekker, 1993.
[28] https://en.wikipedia.org/wiki/Free_spectral_range
[29] A. Luo, Z. Luo, and W. Xu, “Multi-wavelength switchable erbium-doped fiber ring laser with a PBS-based Mach-Zehnder comb filter,” IEEE Photonics Journal, vol.3, no.2, pp.197-220, 2011.
[30] A.Sulaiman, S. W. Harun, H. Arof, and H. Ahmad, “Compact and tunable erbium-doped fiber laser with microfiber Mach-Zehnder interferometer,” IEEE Journal Quantum Electronics, vol.48, no9, pp.1165-1168, 2012.
[31] T. Li, A. Wang, K. Murphy,, and R. Claus, “White-light scanning fiber Michelson interferometer for absolute position–distance measurement,” Optics Letters, vol.20, no.7, pp.785-787, 1995.
[32] Z. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Optics Letters, vol.33, no.10, pp.1105-1107, 2008.
[33] L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sensors Journal, vol.8, no.7, pp.1114-1117, 2008.
[34] http://spie.org/publications/fg14_p33-36_mode_locking?SSO=1