簡易檢索 / 詳目顯示

研究生: 郭晨暉
Chen-Huei Kuo
論文名稱: 感應馬達廣義磁場導向最大轉矩控制策略
Generalized Flux Oriented Maximum Torque Control Strategy For Induction Motor Drives
指導教授: 潘晴財
Ching-Tsai Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 122
中文關鍵詞: 廣義磁場導向控制弱磁控制單位安培最大轉矩控制
外文關鍵詞: Generalized Flux Oriented Control, Soft Start, Maximum Torque Per Ampere Control
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 感應馬達之轉子磁場導向控制理論發表至今已有三十多年,其最大的好處是可以獲得瞬時轉矩響應,而達到如同他激式直流伺服馬達之快速動態響應;然而馬達運轉過程中容易受溫度上升影響而產生參數漂移的現象,若能以常數取代轉子磁通鏈中的互感與轉子電感,即可降低對環境變化的敏感度,此外如何兼顧獲得最大之轉矩,則仍有改進的空間,本論文即基於上述考慮以提出一感應馬達廣義磁場導向最大轉矩控制策略,俾進一步改善傳統場導向控制方法,並獲得更佳之動態性能。
    本論文主要貢獻可分為下列四點:首先,在第二章提出一感應馬達廣義磁場導向控制法則,此控制法則可以避免馬達運轉中受到參數漂移的影響,降低敏感度;其次,在廣義磁場導向控制的條件下,推導出感應馬達各轉速區段受電壓或電流限制之最大轉矩與其對應之滑差頻率曲線,然後進一步求得一符合廣義磁場導向之最大轉矩控制策略;此新控制策略不僅有廣義磁場導向控制之優點,亦同時可獲得最大之輸出轉矩;第三點貢獻是配合本文之新型控制策略,提出一柔性且安全的啟動控制策略。最後在硬體實作方面,實際建構一全數位化之感應馬達驅動器雛形系統,量測其穩態與暫態性能,以驗證本論文所提新型控制策略之有效性。


    The rotor flux oriented control theory of induction motors has been presented for more than thirty years and there are also related commercial products available in the market. Its main characteristic lies in the instantaneous torque response to achieve as fast dynamic response as a separately excited dc motor drive. However, temperature variety will cause motor parameters drift and degrade the performance. It is hoped that this can be improved by replacing the parameters of flux linkage with constants. In spite of the fast torque response, maximization of the resulting torque is still a subject for further improvement. In fact, it is the main motivation of this thesis to propose a generalized flux oriented maximum torque control strategy for the induction motor drives.

    Major contributions of this thesis may be summarized as follows. First, a generalized flux oriented control model is derived in chapter 2 and the model can overcome the effect of motor parameters drifting. Second, analytic expressions of the corresponding slip angular frequency and the maximum torque are also derived. Based on the previous results, a generalized flux oriented maximum torque control strategy is then presented to further increase the dynamic response speed. Third, a soft and safe starting control strategy is presented to build up the initial rotor flux to achieve very fast starting response without violating the current and voltage constraints of the inverter. Finally, a prototype is also constructed to implement the proposed generalized flux oriented maximum torque control strategy by using a digital signal processor, namely TMS320F2812. Both simulation and experimental results verify the validity of the proposed control strategy.

    中文摘要 英文摘要 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.3 本論文之貢獻 1.4 本論文之內容概述 第二章 廣義磁場導向控制方法與單位安培最大轉矩控制 2.1 前言 2.2 鼠籠式感應馬達之動態數學模型 2.3 轉子磁場導向控制之基本原理與弱磁控制 2.4 廣義磁場導向控制 2.5 傳統最大轉矩電流比向量控制策略 2.6 模擬結果 第三章 感應馬達廣義磁場導向最大轉矩控制 3.1 前言 3.2 穩態模式下之廣義磁場導向最大電磁轉矩解析式推導 3.3 新型最大轉矩控制策略 3.4 柔性啟動控制策略 3.5 模擬結果 第四章 實體製作與實測結果 4.1 前言 4.2 實體電路製作 4.3 數位控制器設計 4.4 實測結果 第五章 結論 參考文獻

    [1] F. Blaschke, “The principle of field orientation as applied to the new transvector closed-loop control system for rotating field machines”, Siemens Rev., Vol. 34, 1972, pp.217-220.

    [2] D. W. Novotny and R D. Lorenz, “Introduction to field orientation and high performance ac drives”, IEEE Ind. Application Soc. Annual Meeting Conf. Rec., 1985, Section 1 and 6.

    [3] D. W. Novotny and T. A. Lipo, “Vector control and dynamics of AC Drives”, Oxford University Press, 1997.

    [4] Bech M.M., Pedersen J.K., and Blaabjerg. F., “Field-oriented control of an induction motor using random pulsewidth modulation”, IEEE Trans. on Industry Applications, Vol. 37, Nov.-Dec. 2001, pp. 1777 – 1785.

    [5] Wolbank T.A., Moucka A., and Machl J.L., “A comparative study of field-oriented and direct-torque control of induction motors reference to shaft-sensorless control at low and zero-speed”, Intelligent Control, Proceedings of the 2002 IEEE International Symposium, Oct. 2002. pp. 391 – 396.

    [6]Hofmann H.F., Sanders S.R., and EL.Antably A., “Stator-flux-oriented vector control of synchronous reluctance machines with maximized efficiency”, IEEE Trans. on Industrial Electronics, Vol. 51, Oct. 2004, pp. 1066 – 1072.

    [7] T. A. Raghavendiran, A. S. Saleem, and D. P. Job, “PC based rotor flux oriented control of induction motors using DSP”, IEEE Power Electronics, Drives and Energy Systems for Industrial Growth Conf., Vol. 1, Jan. 1996, pp.207-210.

    [8] S. K. Sul and T. A. Lipo, “Field oriented control of an induction machine in a high frequence link power system”, IEEE Trans. on Power Electronics, Vol. 5, 1990, pp.436-445.
    [9] D. W. Novotny and R D. Lorenz, “Introduction to field orientation and high performance ac drives”, IEEE Ind. Application Soc. Annual Meeting Conf. Rec., 1985, Section 1 and 6.

    [10] S. H. Song, J. W. Choi, and S. K. Sul, “Transient torque maximizing strategy of induction machine in field weakening region”, IEEE Power Electronics. Soc. Annual Meeting Conf. Rec., 1998, pp. 1569-1574.

    [11] X. Xu, R. D. Donker, and D. W. Novotny, “Stator flux orientation control of induction machines in the field weakening region”, IEEE Ind. Application Soc. Annual Meeting Conf. Rec., 1988, pp. 437-443.

    [12] M. H. Shin, D. S. Hyun, and S. B. Cho, “Maximum torque control of stator-flux-oriented induction machine drive in the field-weakening region”, IEEE Trans. on Industry Applications, Vol. 38, Jan.-Feb. 2002, pp. 117-122.

    [13] S. H. Kim and S. K. Sul, “Maximum torque control of an induction machine in the field weakening region”, IEEE Trans. on Industry Applications, Vol. 31, Jul.-Aug. 1995, pp. 787-794.

    [14] S. H. Kim and S. K. Sul, “Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region”, IEEE Trans. on Industrial Electronics, Vol. 44, Aug. 1997, pp. 512-518.

    [15] P.L. Jansen, R.D. Lorenz, and D.W. Novotny, “Observer-based direct field orientation: analysis and comparison of alternative methods”, IEEE Trans. on Industry Applications, Vol. 30, Jul.-Aug. 1994, pp. 945-953.

    [16] F. Yusivar, T. Kihara, M. Sato, S. Wakao, and T. Yamamura, “|Iq| added flux weakening strategy for the rotor flux oriented control of a sinusoidal PWM VSI-fed induction motor”, IEEE Ind. Application Annual Soc. Conf., Vol. 2, Nov. 2001, pp. 1160-1165.

    [17] L. Harnefors, K. Pietilainen, and L. Gertmar, “Torque-maximizing field-weakening control: design, analysis, and parameter selection”, IEEE Trans. on Industrial Electronics, Vol. 48, Feb. 2001, pp. 161-168.

    [18] F. Briz, A. Diez, M.W. Degner, and R.D. Lorenz, ”Current and flux regulation in field-weakening operation of induction motors”, IEEE Trans. on Industry Applications, Vol. 37, Jan. 2001, pp. 42-50.

    [19] L. Harnefors, K. Pietilainen, and L. Gertmar, “Optimum-seeking field weakening control of induction motor drives”, Eighth International Conf. on Power Electronics and Variable Speed Drives,
    Sept. 2000, pp. 176-181.

    [20] R. Jotten and H. Schierling, “Control of the induction machine in the field weakening range”, Automatic Control, Proceedings of IEEE International Symposium, 1983, pp. 297-304.

    [21] M. H. Shin and D. S. Hyun, “Speed sensorless stator flux-oriented control of induction machine in the field weakening region”, IEEE Trans. on Power Electronics, Vol. 18, Mar. 2003, pp. 297-304.

    [22] IEEE Task Force on Load Representation for Dynamical Performance: “Standard load models for power flow and dynamic performance simulation”, IEEE Trans. on Power System., 1995, pp.
    1302–1313.

    [23] D. R. McGaughey, M. Tarbouchi, K. Nutt,and A. Chikhani, “Speed sensorless estimation of AC induction motors using the fast orthogonal search algorithm”, IEEE Trans. on energy conversion, Vol. 21, Mar. 2006, pp. 112-120

    [24]V. Matti, Leppänen, and J. Luomi, “Observer using low-frequency injection for sensorless induction motor control-parameter sensitivity analysis”, IEEE Trans. on power electronics, Vol. 53, Feb. 2006, pp. 216-224

    [25] T. A. Lipo, “Recent progress in the development of solid-state ac motor drives”, IEEE Trans. on Power Electronics, Vol. 3, Apr. 1988, pp. 105-117.

    [26] P. C. Sen, “Electric motor drives and control-past, present, and future”, IEEE Trans. on Industrial Electronics, Vol. 37, Dec. 1999, pp. 562-575.

    [27] A. B. Plunkett, J. D. Datre, and T. A. Lipo, “Synchronous control of a static ac induction motor drive”, IEEE Trans. on Industrial Application, Vol. IA-15, Jul.-Aug. 1979, pp. 430-437.

    [28] E. Levi, A. Boglietti, and M. Lazzari, “Comparative study of detuning effects in indirect rotor flux oriented induction machines due to iron core losses”, International Conf. on Power Electronics and Drive Systems, Feb. 1995, pp639-644.

    [29] N. Matsui, “Recent trends in ac motion control”, IEEE Industrial Electronics Conf., 1992, pp. 25-30.

    [30] K. Kamiyama, T. Ohmae, and T. Sukegawa, “Application tends in ac motor drives”, IEEE Industrial Electronics Conf., 1992, pp. 31-36.

    [31] H. H. Huffman, “Introduction to solid-state adjustable speed drives”, IEEE Trans. on Industrial Application, Vol. 26, No. 4, Jul.-Aug. 1990, pp. 671-678.

    [32] R. D. Lorentz, T. A. Lipo, and D. W. Novotny, “Motion control with induction motors”, Proceeding of IEEE, Vol. 82, 1994, pp.1215-1240.

    [33] K. H. Bayer, H. Waldmann, and M. Webibelzahl, “Field-oriented closed-loop control of a synchronous machine with new transvector control system”, Siemens Rev., Vol. 39, 1972, pp.220-223.

    [34] G. John, W.Erdman, R. Hudson, ChiSheng Fan, and S.Mahajan, “Stator flux estimation from inverter switching states for the field oriented control of induction generators”, IEEE Industry Applications Conf., Vol. 1, 1995, pp.182-188.

    [35] S. K. Kim, M. H. Shin, and D. S. Hyun, “A study on the speed estimation methods of induction motor drives in the field weakening region”, IEEE Ind. Electronics. Soc. Annual Meeting Conf. Rec., 2004, pp. 335-340.

    [36] C. S. Staines, G. M. Asher, and K. J. Bradley, “A periodic burst injection method for deriving rotor position in saturated cage-salient induction motors without a shaft encoder”, IEEE Trans. on Industry Applications, Vol. 35, Jul.-Aug. 1999, pp.851-858.

    [37] P. L. Jansen, and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines”, IEEE Trans. on Industry Applications, Vol. 31, Mar.-Apr. 1995, pp. 240-247.

    [38] J. I. Ha and S. K. Sul, “Sensorless field-orientation control of an induction machine by high-frequency signal injection”, IEEE Trans. on Industry Applications, Vol. 35, Jan.-Feb. 1999, pp. 45-51.

    [39] A. Consoli and A. Testa, “Sensorless control of AC Motors at zero speed”, Industrial Electronics, Proceedings of IEEE International Symposium, Jul. 1999, pp. 373-379.

    [40] N. Teske , G. M. Asher, M. Sumner, and K. J. Bradley, “Encoderless Position Estimation for Symmetric Cage Induction machines under loaded conditions”, IEEE Trans. on Industry Applications, Vol. 37, Nov.-Dec. 2001, pp. 1793-1800.

    [41] F. Briz, M. W. Degner, A. Diez, and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives”, IEEE Trans. on Industry Applications, Vol. 38, May.-Jun. 2002, pp. 670-678.

    [42] N. Teske, G. M. Asher, M. Sumner, and K. J. Bradley, “Analysis and suppression of high-frequency inverter modulation In sensorless position-controlled induction machine drives”, IEEE Trans. on Industry Applications, Vol. 39, Jan.-Feb. 2003, pp. 10-18.

    [43] A. Consoli, G. Scarcella, and A. Testa, “Speed- and current-sensorless field-oriented induction motor drive operating at low stator frequencies”, IEEE Trans. on Industry Applications, Vol. 40, Jan.-Feb. 2004, pp. 186-193.

    [44] G. Yang and T. H. Chin, “Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive”, IEEE Trans. on Industry Applications, Vol. 29, Jul.-Aug. 1993, pp. 820-825.

    [45] E. D. Mitronikas and A. N. Safacas, “An improved sensorless vector-control method for an induction motor drive”, IEEE Trans. on Industry Electronics, Vol. 52, Dec. 2005, pp.1660-1668.

    [46] R. W. D. Doncker and D. W. Novotny, “The universal field oriented controller”, IEEE Trans. on Industry Applications, Vol. 30, Jan.-Feb. 1994, pp. 92-100.

    [47] R. Marino, S. Peresada, and P. Tomei, “On-line stator and rotor resistance estimation for induction motors”, IEEE Trans. on Control Systems Technology, Vol. 8, May 2000, pp. 570-579.

    [48] K. Akatsu and A. Kawamura, “Sensorless very low-speed and zero-speed estimations with on-line rotor resistance estimation of induction motor without signal injection”, IEEE Trans. on Industry Applications, Vol. 36, May-Jun. 2000, pp. 764-771.

    [49] K. Akatsu and A. Kawamura, “On-line rotor resistance estimation using the transient state under the speed sensorless control of induction motor”, IEEE Trans. on Power Electronics, Vol. 15, May 2000, pp. 553-560.

    [50] M. S. N. Said, M. E. H. Benbouzid, and A. Benchaib, “Detection of broken bars in induction motors using an extended Kalman filter for rotor resistance sensorless estimation”, IEEE Trans. on Energy Conversion, Vol. 15, Mar. 2000, pp. 66-70.

    [51] M. A. Ouhrouche, “Vector control of an induction motor with on-line rotor resistance identification”, IEEE Canadian Conf. on Electrical and Computer Engineering, Vol. 2, May 1999, pp. 1121-1125.

    [52] G. Kang, J. Jung, and K. Nam, “A new rotor time constant update rule using stator flux estimates for an induction motor”, IEEE Ind. Application Soc. Annual Meeting. Conf. Rec., Vol. 2, Oct. 1999, pp. 1278-1283.

    [53]李宜虎, 『新型感應馬達轉子磁場導向最大轉矩控制策略』, 清華大學碩士論文, 民國九十二年七月。

    [54]鐘秀國, 『新型轉子磁場導向無感測器感應馬達驅動器』, 清華大學碩士論文, 民國九十四年七月。

    [55] Kwon. C. and Sudhoff. S. D., “Genetic algorithm-based induction machine characterization procedure with application to maximum torque per amp control”, IEEE Trans. on Energy Conversion, Vol. 21, Jun. 2006, pp. 405-415.

    [56] Reicy. S and Vaez Z. S., “Vector control of single-phase induction machine with maximum torque operation”, Industrial Electronics, Proceedings of IEEE International Symposium, Jun. 2005, pp. 923-928.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE