研究生: |
史瓦米 Swami, Siddharth |
---|---|
論文名稱: |
雷射光熱還原微尺度積層製程中的多相介面傳遞現象 Multiphase Interfacial Transport Phenomena in Laser Induced Photothermal Reduction Process of Microscale Additive Manufacturing |
指導教授: |
陳玉彬
Chen, Yu-Bin 李明蒼 Lee, Ming-Tsang |
口試委員: |
羅裕龍
Lo, Yu-Lung 何正榮 Ho, Jeng-Rong 李昌駿 Lee, Chang-Chun 葉安洲 Yeh, An-Chou |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 97 |
中文關鍵詞: | 激光光熱還原 、還原性金屬離子溶液 、液-氣-固界面動力學 、馬蘭戈尼效應 、柔性電子 |
外文關鍵詞: | Laser photothermal reduction, Reductive metal ion solution, liquid-vapor-solid interfacial dynamics, Marangoni effect, Flexible electronics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
激光直接合成和圖案化 (LDSP) 是一種快速且經濟的工藝,它利用無粒子離子溶液來實現柔性電子電路。 用於銀的 LDSP 已得到充分開發和證明。 在這項研究中,研究了銅基 LDSP 作為高成本銀的替代品,以提高成品率並促進 LDSP 的應用。 開發了以水為溶劑、L-抗壞血酸為還原劑的環保型離子溶液,用於在聚對苯二甲酸乙二醇酯 (PET) 基板上形成銅微線圖案。 為了進一步提高導電性和機械耐久性,進行了激光再加熱後處理。 經過 1000 次循環彎曲測試後,通過後處理實現了高達 39% 的電阻降低和高達 77% 的機械耐久性增強。 使用優化的激光參數製造的銅微線的電阻率非常低,為 4.7µΩ cm。 除了導電性和機械耐用性之外,質量也很重要,特別是對於超精細和精密的導電圖案。 以前的研究表明,已開發的 LDSP 微線表面呈凹曲率。 因此,通過數值模擬和實驗對傳輸現象進行了分析,並以 LDSP 對銀微結構的圖案化為例進行了闡述。 發現熱毛細管流動,即 Marangoni 是表面重建背後的主要機制。 開發了一個經驗模型來確定銀微線的理論橫截面輪廓。 理論結果與實驗結果相符,誤差小於12%。 此外,沒有報告激光誘導還原和沈積過程(如 LDSP)的化學反應速率的定量表示。 在 LDSP 過程中微氣泡的形成是不可避免的,因為氣體的產生伴隨著還原化學反應。 我們的文獻綜述表明,對於具有氣泡形成和生長的兩相流環境,缺乏全面的激光誘導光熱反應模型。 因此,進一步進行傳輸現像以研究 LDSP 過程中的微氣泡動力學。 依賴於溫度的反應速率源自對反應流體中的液-氣相變與激光誘導加熱相結合的熱分析。 所提出的模型對附加參數集的預測結果通過實驗驗證,在最高反應速率下的相對誤差為 6.2%。
Laser direct synthesis and patterning (LDSP) is a fast and economical process that utilizes particle-free ionic solution to realize flexible electronic circuitry. LDSP for silver is well-developed and demonstrated. In this study, copper based LDSP as an alternative to high cost silver was investigated to increase the yield rate and to promote the application of LDSP. Water as solvent and L-ascorbic acid as reducing agent based eco-friendly ionic solution was developed for patterning copper microlines on polyethylene terephthalate (PET) substrate. To further improve the electrical conductivity and to enhance mechanical durability, laser reheating post-processing was conducted. Up to 39% reduction of electrical resistance and up to 77% enhancement of mechanical durability after a 1000 cycle bending test was achieved by post-processing. The resistivity of the copper microlines fabricated with optimized laser parameters was remarkably low at 4.7µΩ cm. In addition to conductivity and mechanical durability, quality is also important especially for ultra-fine and precise conductive patterns. Previous studies showed concave curvature on the surface of developed LDSP microlines. Therefore, an analysis of the transport phenomena by both numerical simulation and experiment was carried out and patterning of silver microstructure by LDSP was elaborated as an example. Thermo-capillary flow, i.e. the Marangoni was found to be the dominant mechanism behind the surface reconstruction. An empirical model was developed to determine theoretical cross-section profile of silver microline. Theoretical results were consistent with the experimental results with the discrepancy of less than 12%. Furthermore, quantitative representation of chemical reaction rate was not reported for laser induced reduction and deposition processes (such as LDSP). Micro-bubble formation was inevitable during LDSP because gas generation is accompanied with the reductive chemical reactions. Our literature review revealed a scarcity of comprehensive laser-induced photothermal reaction models for a two-phase flow environment with bubble formation and growth. Therefore, transport phenomena were further carried out to investigate micro-bubble dynamics in the LDSP process. A temperature dependent reaction rate was derived from a thermal analysis of the liquid-vapor phase change in the reacting fluid coupled with laser-induced heating. The predicted results from proposed model for additional set of parameters was validated experimentally with a relative error of 6.2% at the highest reaction rate.
[1] D. Kim et al., “Biocompatible Cost-Effective Electrophysiological Monitoring with Oxidation-Free Cu–Au Core–Shell Nanowire,” Adv. Mater. Technol., vol. 5, no. 12, pp. 1–8, 2020.
[2] F. Liu, W. T. Navaraj, N. Yogeswaran, D. H. Gregory, and R. Dahiya, “van der Waals Contact Engineering of Graphene Field-Effect Transistors for Large-Area Flexible Electronics,” ACS Nano, vol. 13, no. 3, pp. 3257–3268, 2019.
[3] M. S. Miller, J. C. O’Kane, A. Niec, R. S. Carmichael, and T. B. Carmichael, “Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics,” ACS Appl. Mater. Interfaces, vol. 5, no. 20, pp. 10165–10172, 2013.
[4] D. Zhang, T. Huang, and L. Duan, “Emerging Self-Emissive Technologies for Flexible Displays,” Adv. Mater., vol. 32, no. 15, pp. 1–42, 2020.
[5] H. Kim et al., “Biomimetic Color Changing Anisotropic Soft Actuators with Integrated Metal Nanowire Percolation Network Transparent Heaters for Soft Robotics,” Adv. Funct. Mater., vol. 28, no. 32, pp. 1–8, 2018.
[6] K. K. Kim, J. Choi, J. Kim, S. Nam, and S. H. Ko, “Evolvable Skin Electronics by In Situ and In Operando Adaptation,” Adv. Funct. Mater., vol. 2106329, p. 2106329, 2021.
[7] S. Wang, J. Y. Oh, J. Xu, H. Tran, and Z. Bao, “Skin-Inspired Electronics: An Emerging Paradigm,” Acc. Chem. Res., vol. 51, no. 5, pp. 1033–1045, 2018.
[8] H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N. M. Abukhdeir, and I. A. Goldthorpe, “Silver nanowire transparent electrodes for liquid crystal-based smart windows,” Sol. Energy Mater. Sol. Cells, vol. 132, pp. 337–341, 2015.
[9] J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, and S. H. Ko, “Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel,” Nanoscale, vol. 4, no. 20, pp. 6408–6414, 2012.
[10] D. Angmo, T. T. Larsen-Olsen, M. Jørgensen, R. R. Søndergaard, and F. C. Krebs, “Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration,” Adv. Energy Mater., vol. 3, no. 2, pp. 172–175, 2013.
[11] A. Kamyshny and S. Magdassi, “Conductive nanomaterials for 2D and 3D printed flexible electronics,” Chem. Soc. Rev., vol. 48, no. 6, pp. 1712–1740, 2019.
[12] K. D. Harris, A. L. Elias, and H. J. Chung, “Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies,” J. Mater. Sci., vol. 51, no. 6, pp. 2771–2805, 2016.
[13] A. Kamyshny and S. Magdassi, “Conductive nanomaterials for printed electronics,” Small, vol. 10, no. 17, pp. 3515–3535, 2014.
[14] S. Logothetidis, “Flexible organic electronic devices: Materials, process and applications,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 152, no. 1–3, pp. 96–104, 2008.
[15] S. J. Benight, C. Wang, J. B. H. Tok, and Z. Bao, “Stretchable and self-healing polymers and devices for electronic skin,” Prog. Polym. Sci., vol. 38, no. 12, pp. 1961–1977, 2013.
[16] L. Hao, X. Diao, H. Xu, B. Gu, and T. Wang, “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates,” Appl. Surf. Sci., vol. 254, no. 11, pp. 3504–3508, 2008.
[17] J. Lee et al., “Growth and characterization of indium tin oxide thin films deposited on PET substrates,” Thin Solid Films, vol. 516, no. 7, pp. 1634–1639, 2008.
[18] T. L. Li and S. L. C. Hsu, “Preparation and properties of a high temperature, flexible and colorless ITO coated polyimide substrate,” Eur. Polym. J., vol. 43, no. 8, pp. 3368–3373, 2007.
[19] D. ho Lee, S. hun Shim, J. sik Choi, and K. byoung Yoon, “The effect of electro-annealing on the electrical properties of ITO film on colorless polyimide substrate,” Appl. Surf. Sci., vol. 254, no. 15, pp. 4650–4654, 2008.
[20] S. M. Park, K. Ebihara, T. Ikegami, B. J. Lee, K. B. Lim, and P. K. Shin, “Enhanced performance of the OLED with plasma treated ITO and plasma polymerized thiophene buffer layer,” Curr. Appl. Phys., vol. 7, no. 5, pp. 474–479, 2007.
[21] M. H. Jung and H. S. Choi, “Surface treatment and characterization of ITO thin films using atmospheric pressure plasma for organic light emitting diodes,” J. Colloid Interface Sci., vol. 310, no. 2, pp. 550–558, 2007.
[22] T. C. Li and J. F. Lin, “Fatigue life study of ITO/PET specimens in cyclic bending tests,” J. Mater. Sci. Mater. Electron., vol. 26, no. 1, pp. 250–261, 2015.
[23] S. Zips et al., “Direct Stereolithographic 3D Printing of Microfluidic Structures on Polymer Substrates for Printed Electronics,” Adv. Mater. Technol., vol. 4, no. 3, pp. 1–5, 2019.
[24] A. J. Lopes, E. MacDonald, and R. B. Wicker, “Integrating stereolithography and direct print technologies for 3D structural electronics fabrication,” Rapid Prototyp. J., vol. 18, no. 2, pp. 129–143, 2012.
[25] K. V. Wong and A. Hernandez, “A Review of Additive Manufacturing,” ISRN Mech. Eng., vol. 2012, pp. 1–10, 2012.
[26] R. Sheth, E. R. Balesh, Y. S. Zhang, J. A. Hirsch, A. Khademhosseini, and R. Oklu, “Three-Dimensional Printing: An Enabling Technology for IR,” J. Vasc. Interv. Radiol., vol. 27, no. 6, pp. 859–865, 2016.
[27] I. V. Polyakov, G. V. Vaganov, V. E. Yudin, E. M. Ivan’kova, E. N. Popova, and V. Y. Elokhovskii, “Investigation of Properties of Nanocomposite Polyimide Samples Obtained by Fused Deposition Modeling,” Mech. Compos. Mater., vol. 54, no. 1, pp. 33–40, 2018.
[28] F. Zhang et al., “3D Interconnected Conductive Graphite Nanoplatelet Welded Carbon Nanotube Networks for Stretchable Conductors,” Adv. Funct. Mater., vol. 31, no. 49, pp. 1–12, 2021.
[29] G. Luo et al., “Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics,” Chem. Eng. J., vol. 451, no. P1, p. 138549, 2023.
[30] X. Tang et al., “Controllable Graphene Wrinkle for a High-Performance Flexible Pressure Sensor,” ACS Appl. Mater. Interfaces, vol. 13, no. 17, pp. 20448–20458, 2021.
[31] L. Huang et al., “Synergistic Interfacial Bonding in Reduced Graphene Oxide Fiber Cathodes Containing Polypyrrole@sulfur Nanospheres for Flexible Energy Storage,” Angew. Chemie, vol. 134, no. 44, 2022.
[32] R. Brooke, D. Evans, M. Dienel, P. Hojati-Talemi, P. Murphy, and M. Fabretto, “Inkjet printing and vapor phase polymerization: Patterned conductive PEDOT for electronic applications,” J. Mater. Chem. C, vol. 1, no. 20, pp. 3353–3358, 2013.
[33] P. Tan et al., “Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics,” Nat. Commun., vol. 13, no. 1, pp. 1–12, 2022.
[34] Q. Gao, P. Wang, M. Wang, Y. Wang, and J. Zhu, “Metal salt modified PEDOT: PSS fibers with enhanced elongation and electroconductivity for wearable e-textiles,” Compos. Commun., vol. 25, no. January, p. 100700, 2021.
[35] J. Wang, B. Zhan, S. Zhang, Y. Wang, and L. Yan, “Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol),” ACS Appl. Polym. Mater., vol. 4, no. 3, pp. 2057–2064, 2022.
[36] J. Yeo et al., “Next Generation Non-Vacuum , Maskless , Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” vol. 7, no. 8, pp. 1–9, 2012.
[37] D. Paeng et al., “Laser-induced reductive sintering of nickel oxide nanoparticles under ambient conditions,” J. Phys. Chem. C, vol. 119, no. 11, pp. 6363–6372, 2015.
[38] A. P. Straub et al., “Highly Conductive and Permeable Nanocomposite Ultrafiltration Membranes Using Laser-Reduced Graphene Oxide,” Nano Lett., vol. 21, no. 6, pp. 2429–2435, 2021.
[39] M. Mizoshiri and K. Yoshidomi, “Cu patterning using femtosecond laser reductive sintering of cuo nanoparticles under inert gas injection,” Materials (Basel)., vol. 14, no. 12, 2021.
[40] M. Cui, T. Huang, and R. Xiao, “Rapid fabrication of conductive copper patterns on glass by femtosecond Laser-Induced reduction,” Appl. Surf. Sci., vol. 588, no. February, p. 152915, 2022.
[41] B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,” J. Phys. Chem. C, vol. 115, no. 48, pp. 23664–23670, 2011.
[42] J. Bin In, D. Lee, F. Fornasiero, A. Noy, and C. P. Grigoropoulos, “Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices,” ACS Nano, vol. 6, no. 9, pp. 7858–7866, 2012.
[43] S. Bai et al., “Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors,” Nano-Micro Lett., vol. 9, no. 4, pp. 1–13, 2017.
[44] S. M. Pozov et al., “Indium Tin Oxide-Free Inverted Organic Photovoltaics Using Laser-Induced Forward Transfer Silver Nanoparticle Embedded Metal Grids,” ACS Appl. Electron. Mater., vol. 4, no. 6, pp. 2689–2698, 2022.
[45] K. Samoson et al., “Facile fabrication of a flexible laser induced gold nanoparticle/chitosan/ porous graphene electrode for uric acid detection,” Talanta, vol. 243, no. September 2021, p. 123319, 2022.
[46] J. Tang, X. Zhong, H. Li, Y. Li, F. Pan, and B. Xu, “In-situ and selectively laser reduced graphene oxide sheets as excellent conductive additive for high rate capability LiFePO4 lithium ion batteries,” J. Power Sources, vol. 412, no. December 2018, pp. 677–682, 2019.
[47] M. A. Riheen, T. K. Saha, and P. K. Sekhar, “Inkjet Printing on PET Substrate,” J. Electrochem. Soc., vol. 166, no. 9, pp. B3036–B3039, 2019.
[48] C. Kullmann et al., “3D micro-structures by piezoelectric inkjet printing of gold nanofluids,” J. Micromechanics Microengineering, vol. 22, no. 5, 2012.
[49] J. H. Park et al., “Plasmonic-Tuned Flash Cu Nanowelding with Ultrafast Photochemical-Reducing and Interlocking on Flexible Plastics,” Adv. Funct. Mater., vol. 27, no. 29, pp. 1–11, 2017.
[50] J. Park et al., “Highly Customizable Transparent Silver Nanowire Patterning via Inkjet-Printed Conductive Polymer Templates Formed on Various Surfaces,” Adv. Mater. Technol., vol. 5, no. 6, pp. 1–8, 2020.
[51] Y. Lee et al., “Digital Laser Micropainting for Reprogrammable Optoelectronic Applications,” Adv. Funct. Mater., vol. 31, no. 1, pp. 1–8, 2021.
[52] J. Lee et al., “Stretchable Skin-Like Cooling/Heating Device for Reconstruction of Artificial Thermal Sensation in Virtual Reality,” Adv. Funct. Mater., vol. 30, no. 29, 2020.
[53] K. K. Kim, J. Choi, and S. H. Ko, “Energy Harvesting Untethered Soft Electronic Devices,” Adv. Healthc. Mater., vol. 10, no. 17, pp. 1–15, 2021.
[54] M. T. Lee, D. Lee, A. Sherry, and C. P. Grigoropoulos, “Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write,” J. Micromechanics Microengineering, vol. 21, no. 9, 2011.
[55] Y. D. Suh et al., “Maskless Fabrication of Highly Robust, Flexible Transparent Cu Conductor by Random Crack Network Assisted Cu Nanoparticle Patterning and Laser Sintering,” Adv. Electron. Mater., vol. 2, no. 12, 2016.
[56] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater., vol. 14, no. 11, pp. 4736–4745, 2002.
[57] I. Hong et al., “Semipermanent Copper Nanowire Network with an Oxidation-Proof Encapsulation Layer,” Adv. Mater. Technol., vol. 4, no. 4, pp. 1–7, 2019.
[58] S. B. Walker and J. A. Lewis, “Reactive silver inks for patterning high-conductivity features at mild temperatures,” J. Am. Chem. Soc., vol. 134, no. 3, pp. 1419–1421, 2012.
[59] Y. K. Liu and M. T. Lee, “Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate,” ACS Appl. Mater. Interfaces, vol. 6, no. 16, pp. 14576–14582, 2014.
[60] S. L. Tsai, Y. K. Liu, H. Pan, C. H. Liu, and M. T. Lee, “The coupled photothermal reaction and transport in a laser additive metal nanolayer simultaneous synthesis and pattering for flexible electronics,” Nanomaterials, vol. 6, no. 1, 2016.
[61] S. J. Joo, S. H. Park, C. J. Moon, and H. S. Kim, “A Highly Reliable Copper Nanowire/Nanoparticle Ink Pattern with High Conductivity on Flexible Substrate Prepared via a Flash Light-Sintering Technique,” ACS Appl. Mater. Interfaces, vol. 7, no. 10, pp. 5674–5684, 2015.
[62] D. Deng, Y. Jin, Y. Cheng, T. Qi, and F. Xiao, “Copper nanoparticles: Aqueous phase synthesis and conductive films fabrication at low sintering temperature,” ACS Appl. Mater. Interfaces, vol. 5, no. 9, pp. 3839–3846, 2013.
[63] J. Kwon et al., “Flexible and Transparent Cu Electronics by Low-Temperature Acid-Assisted Laser Processing of Cu Nanoparticles,” Adv. Mater. Technol., vol. 2, no. 2, 2017.
[64] T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc, and M. C. Dang, “Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 2, no. 1, 2011.
[65] J. Xiong, Y. Wang, Q. Xue, and X. Wu, “Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid,” Green Chem., vol. 13, no. 4, pp. 900–904, 2011.
[66] Y. T. Kwon, S. J. Yune, Y. Song, W. H. Yeo, and Y. H. Choa, “Green Manufacturing of Highly Conductive Cu2O and Cu Nanoparticles for Photonic-Sintered Printed Electronics,” ACS Appl. Electron. Mater., vol. 1, no. 10, pp. 2069–2075, 2019.
[67] M. Yang et al., “Mechanical and environmental durability of roll-to-roll printed silver nanoparticle film using a rapid laser annealing process for flexible electronics,” Microelectron. Reliab., vol. 54, no. 12, pp. 2871–2880, 2014.
[68] T. Schwarz-Selinger, D. G. Cahill, S. C. Chen, S. J. Moon, and C. P. Grigoropoulos, “Micron-scale modifications of Si surface morphology by pulsed-laser texturing,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 64, no. 15, pp. 1553231–1553237, 2001.
[69] J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett., vol. 84, no. 5, pp. 801–803, 2004.
[70] R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro Nanoeng., vol. 2, no. 1, pp. 21–25, 2007.
[71] V. B. Nam et al., “Highly Stable Ni-Based Flexible Transparent Conducting Panels Fabricated by Laser Digital Patterning,” Adv. Funct. Mater., vol. 29, no. 8, 2019.
[72] M. Gugliotti, M. S. Baptista, and M. J. Politi, “Surface tension gradients induced by temperature: The thermal Marangoni effect,” J. Chem. Educ., vol. 81, no. 6, pp. 824–826, 2004.
[73] K. Fukuda, T. Sekine, D. Kumaki, and S. Tokito, “Profile control of inkjet printed silver electrodes and their application to organic transistors,” ACS Appl. Mater. Interfaces, vol. 5, no. 9, pp. 3916–3920, 2013.
[74] K. Setoura, S. Ito, and H. Miyasaka, “Stationary bubble formation and Marangoni convection induced by CW laser heating of a single gold nanoparticle,” Nanoscale, vol. 9, no. 2, pp. 719–730, 2017.
[75] M. M. Pariona, A. F. Taques, and L. A. Woiciechowski, “The Marangoni effect on microstructure properties and morphology of laser-treated Al-Fe alloy with single track by FEM: Varying the laser beam velocity,” Int. J. Heat Mass Transf., vol. 119, pp. 10–19, 2018.
[76] K. K. Kim, I. H. Ha, P. Won, D. G. Seo, K. J. Cho, and S. H. Ko, “Transparent wearable three-dimensional touch by self-generated multiscale structure,” Nat. Commun., vol. 10, no. 1, 2019.
[77] C. Kindle, A. Castonguay, S. McGee, J. A. Tomko, P. E. Hopkins, and L. D. Zarzar, “Direct Laser Writing from Aqueous Precursors for Nano to Microscale Topographical Control, Integration, and Synthesis of Nanocrystalline Mixed Metal Oxides,” ACS Appl. Nano Mater., vol. 2, no. 5, pp. 2581–2586, May 2019.
[78] S. Siddharth, S. L. Tsai, Y. Bin Chen, and M. T. Lee, “Opto-thermo-fluidic transport phenomena involving thermocapillary flow during laser microfabrication,” Int. J. Heat Mass Transf., vol. 162, pp. 4–7, 2020.
[79] D. Bäuerle, Laser processing and chemistry: Recent developments, vol. 186, no. 1–4. 2002.
[80] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature, vol. 389, no. 6653, pp. 827–829, 1997.
[81] C. P. Grigoropoulos, Transport in Laser Microfabrication: Fundamentals and Applications. Cambridge: Cambridge University Press, 2009.
[82] T. Fuhrich, P. Berger, and H. Hügel, “Marangoni effect in laser deep penetration welding of steel,” J. Laser Appl., vol. 13, no. 5, pp. 178–186, 2001.
[83] C. J. Lan, S. L. Tsai, and M. T. Lee, “Direct silver micro circuit patterning on transparent polyethylene terephthalate film using laser-induced photothermochemical synthesis,” Micromachines, vol. 8, no. 2, 2017.
[84] N. R. THOMPSON, “28. - SILVER,” in The Chemistry of Copper, Silver and Gold, A. G. Massey, N. R. Thompson, B. F. G. Johnson, and R. Davis, Eds. Pergamon, 1973, pp. 79–128.
[85] J. Lee, W. Shimoda, and T. Tanaka, “Surface tension and its temperature coefficient of liquid Sn-X (X=Ag, Cu) alloys,” Mater. Trans., vol. 45, no. 9, pp. 2864–2870, 2004.
[86] V. P. Carey, Liquid-Vapor Phase-Change Phenomena. CRC Press, 2020.
[87] H. J. Liaw and T. A. Wang, “A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures,” J. Hazard. Mater., vol. 141, no. 1, pp. 193–201, Mar. 2007.
[88] O. Miyatake, I. Tanaka, and N. Lior, “Bubble growth in superheated solutions with a non-volatile solute,” Chem. Eng. Sci., vol. 49, no. 9, pp. 1301–1312, 1994.
[89] B. B. Mikic, W. M. Rohsenow, and P. Griffith, “On bubble growth rates,” Int. J. Heat Mass Transf., vol. 13, no. 4, pp. 657–666, Apr. 1970.
[90] T. Marnoto, I. G. S. Budiaman, C. R. Hapsari, R. A. Y. Prakosa, and K. Arifin, “Dehydrating ethanol using a ternary solute and extractive batch distillation,” Malaysian J. Anal. Sci., vol. 23, no. 1, pp. 124–130, 2019.
[91] W. C. Fernelius, “An ammonia world,” J. Chem. Educ., vol. 8, no. 1, p. 55, 1931.
[92] O. K. Rice, “Dynamic Surface Tension and the Structure of Surfaces,” J. Phys. Chem., vol. 31, no. 2, pp. 207–215, 1927.
[93] S. Azizian and M. Hemmati, “Surface tension of binary mixtures of ethanol + ethylene glycol from 20 to 50°C,” J. Chem. Eng. Data, vol. 48, no. 3, pp. 662–663, 2003.
[94] B. Haba and Y. Morishige, “Novel drilling technique in polyimide using visible laser,” Appl. Phys. Lett., vol. 66, no. 26, pp. 3591–3593, 1995.
[95] G. Son, V. K. Dhir, M. Asme, and N. Ramanujapu, “Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface,” 1999.
[96] A. B. Nassar, “Apparent depth,” Phys. Teach., vol. 32, no. 9, pp. 526–529, 1994.
[97] A. Ostendorf, S. Claußen, and M. G. Jones, Laser material processing. 2010.
[98] G. MacBeth and A. Ralph Thompson, “Densities and Refractive Indexes for Propylene Glycol-Water Solutions,” Anal. Chem., vol. 23, no. 4, pp. 618–619, 1951.
[99] H. Frej, M. Jakubczyk, and K. Sangwal, “Density, surface tension, and refractive index of aqueous ammonium oxalate solutions from 293 K to 333 K,” J. Chem. Eng. Data, vol. 43, no. 2, pp. 158–161, 1998.
[100] B. K. Larkin, “Thermocapillary flow around hemispherical bubble,” AIChE J., vol. 16, no. 1, pp. 101–107, 1970.
[101] V. I. Yusupov, S. I. Tsypina, and V. N. Bagratashvili, “Trapping of nanoparticles in a liquid by laser-induced microbubbles,” Laser Phys. Lett., vol. 11, no. 11, 2014.
[102] K. Namura, K. Nakajima, K. Kimura, and M. Suzuki, “Photothermally controlled Marangoni flow around a micro bubble,” Appl. Phys. Lett., vol. 106, no. 4, pp. 1–6, 2015.
[103] P. K. Khanna, T. S. Kale, M. Shaikh, N. K. Rao, and C. V. V. Satyanarayana, “Synthesis of oleic acid capped copper nano-particles via reduction of copper salt by SFS,” Mater. Chem. Phys., vol. 110, no. 1, pp. 21–25, 2008.
[104] T. Araki et al., “Cu salt ink formulation for printed electronics using photonic sintering,” Langmuir, vol. 29, no. 35, pp. 11192–11197, 2013.
[105] M. Swadźba-Kwaśny, L. Chancelier, S. Ng, H. G. Manyar, C. Hardacre, and P. Nockemann, “Facile in situ synthesis of nanofluids based on ionic liquids and copper oxide clusters and nanoparticles,” Dalt. Trans., vol. 41, no. 1, pp. 219–227, 2012.
[106] S. Siddharth, Y. Bin Chen, and M. T. Lee, “Eco-Friendly and Particle-Free Copper Ionic Aqueous Precursor for In Situ Low Temperature Photothermal Synthesizing and Patterning of Highly Conductive Copper Microstructures on Flexible Substrate,” Adv. Eng. Mater., vol. 24, no. 3, Mar. 2022.
[107] S. Il Park, J. H. Ahn, X. Feng, S. Wang, Y. Huang, and J. A. Rogers, “Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates,” Adv. Funct. Mater., vol. 18, no. 18, pp. 2673–2684, 2008.
[108] M. Yang et al., “Microelectronics Reliability Mechanical and environmental durability of roll-to-roll printed silver nanoparticle film using a rapid laser annealing process for flexible electronics,” Microelectron. Reliab., vol. 54, no. 12, pp. 2871–2880, 2014.
[109] V. B. Nam et al., “Highly Stable Ni-Based Flexible Transparent Conducting Panels Fabricated by Laser Digital Patterning,” Adv. Funct. Mater., vol. 29, no. 8, pp. 1–10, 2019.
[110] C. C. Lee, R. C. Shih, P. C. Huang, and S. F. Tseng, “Adhesion enhancement of conductive graphene/PI substrates through a vacuum plasma system,” Surf. Coatings Technol., vol. 388, no. March, p. 125601, 2020.
[111] L. Lu, N. R. Tao, L. B. Wang, B. Z. Ding, and K. Lu, “Grain growth and strain release in nanocrystalline copper,” J. Appl. Phys., vol. 89, no. 11 I, pp. 6408–6414, 2001.