研究生: |
游原瑞 You, Yuan-Ruei |
---|---|
論文名稱: |
有機薄膜電晶體應用於銅離子及氰離子偵測 Organic Thin Film Transistor Sensor in Presence of Cu2+ and CN- Ions |
指導教授: |
吳孟奇
Wu, Meng-Chyi |
口試委員: |
朱治偉
Chu, Chih-Wei 陳方中 Chen, Fang-Chung 劉柏村 Liu, Po-Tsun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 感應器 |
外文關鍵詞: | sensor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們將有機半導體材料五苯環和schiff base pyrene衍生物製作成雙分子層的有機薄膜電晶體,應用於銅離子及氰離子偵測。量測到載子遷移率與門檻電壓分別為0.12 cm2/V-s及-22.2伏特,開關電流比為105。我們發現在13種陽離子中,元件只有在遇到含有銅離子的溶液時,門檻電壓及關路電流會有劇烈變化,而在9種陰離子中,只有遇到含氰離子的溶液,飽和電流會降低。在混合兩種離子的溶液中,元件還是只對銅離子、氰離子的選擇性偵測。
而在元件的敏感性測試,我們將銅離子溶液稀釋成20到350微莫爾濃度,氰離子溶液稀釋成100到350微莫爾濃度進行測試。從原子力顯微鏡和紅外線光譜的結果可看出pyrene與銅離子反應形成 pyrene-pyrene* coordination,而與氰離子反應形成benzoxazole ring,因此造成晶粒從長條狀重新自我組織成細小星型的形狀。
In this thesis, we described the self-assembly of pyrene derivative by constructing pentacene / schiff base pyrene derivative(P1) OTFTs for metal and anion sensor. The carrier mobility (µ) of 0.12 cm2/V-s, a threshold voltage (Vth) of -22.20 V, and five orders on/off current ratio device parameters are extracted from bilayer OTFTs. From this device we observed huge change only for Cu2+ among the thirteen metal ions and CN- among the nine anion ions, by changes in Vth and Ioff current for Cu2+ ions whereas Isat decrease for CN- ions. The selectivity of both ions is noticed from the mixed ion solutions.
The sensitivity is executed in different concentrations (ranging from 20 to 350 µM) of Cu2+ and CN- ions (ranging from 100 to 350 µM). The self-assembling of pyrene derivative by forming pyrene-pyrene* coordination with Cu2+ and pyrene derivative rods break into smaller pieces by forming benzoxazole ring in CN- ions are conformed by AFM and IR spectra.
[1] H. Yan, Z. H. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler and A. Facchetti, Nature. 2009, 457, 679.
[2] A. Facchetti, Chem. Mater. 2011, 23, 733.
[3] M, Ramesh, H-C, Lin and C-W, Chu J. Mater. Chem. 2012, 22, 16506.
[4] Q. Zhang and V. Subramanian, Biosens. Bioelectron. 2007, 12, 3182.
[5] M. C. Linder and M. Hazegh-Azam, Am. J. Clin. Nutr. 1996, 63, 797S.
[6] E. Forzani, H. Q. Zhang, W. Chen and N. J. Tao, Environ. Sci. Technol. 2005, 39, 1257.
[7] B. Vennesland, E. E. Comm, C. J. Knownles, J. Westly and F. Wissing, Cyanide in Biology, Academic Press, London 1981.
[8] K. W. Kulig, Cyanide Toxicity, U.S. Department of Health and Human Services, Atlanta, GA 1991.
[9] Guidelines for Drinking-Water Quality, World Health Organization, Geneva 1996.
[10] B. Ding, Y. Si, X. Wang, J. Yu, L. Feng and G. Sun, J. Mater. Chem. 2011, 21, 13345.
[11] T. T. Christison and J. S. Rohrer, J. Chromatogr. A. 2007, 31, 1155.
[12] G. Qian, X. Li and Z.Y. Wang, J. Mater. Chem. 2009, 19, 522.
[13] F. Buth, A. Donner, M. Sachsenhauser, M. Stutzmann and J. A. Garrido, Adv. Mater. 2012, 24, 4511.
[14] M. L. Hammock, A. N. Sokolov, R. M. Stoltenberg, B.D. Naab and Z. Bao, ACS Nano. 2012, 6, 3100.
[15] M. Ramesh, H-C. Lin and C-W. Chu, Biosens. Bioelectron. 2013, 42, 76.
[16] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang and X. W. Liang, Adv. Funct. Mater. 2007, 17, 3639.
[17] H. Dong, C. Wang and W. Hu, Chem. Commun. 2010, 46, 5211.
[18] S. Karuppannan and J-C. Chambron, Chem. Asian J. 2011, 6, 964.
[19] M. A. Cejas and F. M. Raymo, Langmuir. 2005, 21, 5795.
[20] M. E. Østergaard and P. J. Hrdlicka, Chem. Soc. Rev. 2011, 40, 5771.
[21] Z. Wang, P. Huang, A. Bhirde, A. Jin, Y. Ma, G. Niu, N. Neamati and X. Chen, Chem. Commun. 2012, 48, 9768.
[22] J. Kwon, J-P. Hong, S. Noh, T-M. Kim, J-J. Kim,C. Lee, S. Lee and J-I. Hong, New J. Chem. 2012, 36, 1813.
[23] L. Giribabu, R. K. Kanaparthi and V. Velkannan, The Chemical Record. 2012, 12, 306.
[24] L. Basabe-Desmonts, D. N. Reinhoudt and M. Crego-Calama, Chem. Soc. Rev. 2007, 36, 993.
[25] J. M. Kim, S. J. Min, S. W. Lee, J. H. Bok and J. S. Kim, Chem. Commun. 2005, 3427.
[26] G. Horowitz, Adv. Mater. 1998, 10, 365.
[27] H. Sirringhaus, N. Tessler, R. H. Friend, Science. 1998, 280, 1741.
[28] F. Maddalena, M. J. Kuiper, B. Poolman, F. Brouwer, J. C. Hummelen, D. M. de Leeuw, B. De Boer, P. W. M. Blom, J. Appl. Phys. 2010, 108, 124501.
[29] Q. T. Zhang, V. Subramanian, Biosens. Bioelectron. 2007, 22, 3182.
[30] M. E. Roberts, S. C. B. Mannsfeld, N. Queralto, C. Reese, J. Locklin, W. Knoll, Z. N. Bao, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 12134.
[31] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 4835.
[32] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science. 2000, 290, 2123.
[33] L. Peng and Y. Feng, Adv. Mater. 2012, 24, 34.
[34] John R. Vig, J. Vac. Sci. Technol. A. 1985, 3, 1027.
[35] S. R. Forrest, J. Am. Chem. Soc. 1997, 97, 1793.
[36] R. Schlesser, “Organic electro-optic crystals and thin films: optical characterization and molecular bean epitaxy”, PhD thesis, ETH Zurich 1996.
[37] D. L. Smith, “Thin-Film Deposition: Principle and Practice”, McGraw-Hill, New York, 1995.
[38] G. Binnig, C. F. Quated, Ch. Gerber, Phys. Rev. Lett. 1986, 56, 930.
[39] T. R. Albrecht, S. Akamine, T. E. Carver, C. F. Quate, J. Vac. Sci. A. 1990, 8, 3386.
[40] H. Klauk, M. Halik, U. Zschieschang, G. Schmid and W. Radlik, J. Appl. Phys. 2002, 92, 5259.
[41] M. Shellaiah, Y-H. Wu, A. Singh, M. V. R. Raju, H-C. Lin, J. Mater. Chem. A. 2013, 1, 1310.
[42] L. Zang, D. Wei, S. Wang, S. Jiang, Tetrahedron. 2012, 63, 636