簡易檢索 / 詳目顯示

研究生: 謝翠玲
Hsieh, Cuei-Ling
論文名稱: 毫米波振盪器設計
Design of Millimeter-Wave Oscillators
指導教授: 劉怡君
Liu, Jenny Yi-Chun
口試委員: 孟慶宗
Meng, Chin-Chun
郭建男
Kuo, Chien-Nan
徐碩鴻
Hsu, Swan S.H.
朱大舜
Chu, Ta-Shun
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 101
中文關鍵詞: 毫米波振盪器四相位振盪器
外文關鍵詞: Push-Push, Triple-Push
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文介紹了三種毫米波振盪器,此三種振盪器均採用90-nm CMOS製程並適用於毫米波系統。

    第一顆振盪器為push-push振盪器,其電路架構為一顆cross-coupled pair振盪器,後面接著一顆倍頻器,振盪器本身振盪在55 GHz,而倍頻器則將頻率推到112 GHz,此電路在1-MHz偏移頻率下有 -93 dBc/Hz的相位雜訊表現。

    第二顆振盪器為triple-push振盪器,其電路由兩組環形振盪器反向對接而成,此兩組環形振盪器反接的結構,能夠提高整體電路的相位雜訊的表現;並利用電晶體尺寸之差距,來提高訊號的非線性度,進而提昇三倍頻的輸出功率。此電路能夠提供210 GHz的輸出訊號,並在1-MHz的偏移頻率下有-88 dBc/Hz的相位雜訊表現。

    第三顆振盪器為四相位振盪器,此電路架構以傳統的P-QVCO為基礎,在傳統之P-QVCO中增加一組額外的耦合路徑。此耦合電路之電晶體,會與原本電路之耦合電晶體組成一組差動對。此差動對能夠消除共模雜訊,進而增加相位雜訊的表現。此電路能提供69 GHz的四相位訊號輸出,其相位雜訊在1-MHz的偏移頻率下有¬-105 dBc/Hz的成果。並且量測出I/Q訊號的相位差小於1º,振幅差為0.47 dB。


    This paper introduces three millimeter-wave oscillators. All of these works are implemented under a 90-nm CMOS process and are suitable for millimeter-wave systems.
    The first oscillator is a push-push oscillator, which contains a cross-coupled pair oscillator, followed by a frequency doubler. This oscillator oscillates at 55 GHz, and the frequency doubler pushes the final output signal to oscillate at 112 GHz. The phase noise is -93 dBc/Hz at the 1-MHz offset from the output frequency.
    The second work is a triple-push oscillator. This work is formed by the two three-stage ring oscillators. These two ring oscillators are reversed coupled. The reverse structure can improve the performance of the phase noise and the signal nonlinearity; and further increases the third harmonic signal output power. This circuit can provide an output signal oscillating at 210 GHz, and the phase noise performance is -88 dBc/Hz at the 1-MHz offset from the oscillation frequency.
    The third oscillator is a quadrature oscillator. The circuit architecture is based on a traditional P-QVCO, in which an additional coupling path is added to the P-QVCO. This new coupling path is in a reversed direction when compared with the original coupling path. The transistors of the original and reversed coupling path form as differential pair elements. This differential pair can eliminate common mode noise, then, increasing the phase noise performance. The oscillation frequency of this work is at 69 GHz. The phase noise -105 dBc/Hz at 1-MHz offset frequency from the oscillation frequency. The measured phase difference of the I/Q signals is less than 1º, and the amplitude difference is 0.47 dB.

    摘要 i Abstract ii Contents i List of Figures iii List of Tables vi Chapter 1 Introduction 7 1.1. Motivation 7 1.2. Thesis Organization 8 Chapter 2 A Push-Push Oscillator in 90-nm CMOS 9 2.1. Introduction of Push-Push Oscillator 9 2.2. Proposed Circuit 11 2.2.1 Circuit Architecture 11 2.2.2 Inductor Design 13 2.3. Tuning Range 15 2.4. Design Consideration & Chip Implementation 16 2.5. Measurement Result 17 2.6. Conclusions 21 Chapter 3 A Low Phase Noise 210 GHz Ring-Based Tripled-Push Oscillator in 90-nm CMOS 22 3.1. Introduction of Triple-Push Oscillator 22 3.2. Proposed Direct Coupled LC Triple-Push Ring Oscillator 26 3.3. Third Harmonic Signal Generation, Extraction, and Unwanted Signal Rejection 30 3.4. Tuning Range 37 3.5. Phase Noise 42 3.6. Design Consideration & Chip Implementation 47 3.7. Measurement Result 52 3.8. Conclusions 59 Chapter 4 A 67 GHz Dual Injection Quadrature VCO with -182.9 dBc/Hz FOM in 90-nm CMOS 61 4.1. Introduction of QVCO 61 4.2. Proposed Dual Injection QVCO 68 4.3. Current Phasor Analysis 71 4.3.1 Current Phasor of P-QVCO 72 4.3.2 Current Phase of Proposed Circuit 73 4.4. Phase Noise 74 4.4.1 Tank Quality Factor 74 4.4.2 Differential Coupling Element 75 4.4.3 Cyclo-stationary Noise source 77 4.5. Design Consideration & Chip Implementation 80 4.6. Measurement Result 84 4.7. Conclusions 90 Chapter 5 Conclusions and Future Works 92 5.1. Conclusions 92 5.2. Future Works 92 Bibliography 94

    [1] T. H. Huang, P. L. You, C. H. Chiu, and C. Y. Wu, “Wide Tuning Range Millimeter-Wave VCOs Based on Switchable Inductive Tuning Methodology in 90nm CMOS Technology,” in Proc. Eur. Microw. Conf., Oct., 2014, pp. 576-579.
    [2] C. Cao and K. K. O, “A 140-GHz Fundamental Mode Voltage-Controlled Oscillator in 90-nm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 555-557, Oct. 2006.
    [3] H. Koo, C.-Y. Kim, and S. Hong, “A G-Band Standing-Wave Push-Push VCO Using a Transmission-Line Resonator,” IEEE Trans. Microw. Theory Tech., vol.63, no.3, pp. 1036-1045, Mar. 2015.
    [4] Y. Chao, H. C. Luong, and Z. Hong, “Analysis and Design of a 14.1-mW 50/100-GHz Transformer-Based PLL with Embedded Phase Shifter in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 4, pp. 1193-1201, Apr. 2015.
    [5] M. Adnan and E. Afshari, “A 105GHz VCO with 9.5% Tuning Range and 2.8mW Peak Output Power Using Coupled Colpitts Oscillators in 65nm bulk CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., 2013, pp. 239-242.
    [6] J. Borremans, M. Dehan, K. Scheir, M. Kuijk, and P. Wambacq, “VCO Design for 60 GHz Applications Using Differential Shielded Inductors in 0.13 μm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., 2008, pp. 135-138.
    [7] Yu-Lung Tang and Huei Wang, “Triple-push oscillator approach: theory and experiments,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1472-1479, Oct. 2001.
    [8] Z. Wang, P.-Y. Chiang, P. Nazari, C.-C. Wang, Z. Chen, and P. Heydari, “A CMOS 210-GHz fundamental transceiver with OOK modulation,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 564-580, Mar. 2014.
    [9] B. Razavi, “A 300-GHz fundamental oscillator in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 894-903, Apr. 2011.
    [10] S. Kang, J.-C. Chien, and A. M. Niknejad, “A W-band low-noise PLL with a fundamental VCO in SiFe for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 10, pp. 2390-2404, Aug. 2014.
    [11] N. Landsberg and E. Socher, “240 GHz and 272 GHz fundamental VCOs using 32 nm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 12, pp. 4461-4471, Dec. 2013.
    [12] S. Shopov, A. Balteanu, J. Hascg, P. Chevalier, A. Cathelin, and S. P. Voinigescu, “A 234-261-GHz 55-nm SiGe BiCMOS signal source with 5.4-7.2 dBm output power, 1.3% DC-to-RF efficiency, and 1-GHz divided-down output,” IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 2054-2065, Jun. 2016.
    [13] E. Ojefors, B. Heinemann, and U. R. Pfeiffer, “Active 220- and 325-GHz frequency ultiplier chains in a SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1311-1318, May 2011
    [14] H. Koo, C.-Y. Kim, and S. Hong, “Design and analysis of 239 GHz CMOS push-push transformer-based VCO with high efficiency and wide tuning range,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 7, pp. 1883-1893, Jul. 2015.
    [15] R. Kananizadeh and O. Momeni “A 190.5GHz mode-switching VCO with 20.7% continuous tuning range and maximum power of -2.1dBm in 0.13μm BiCMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig. Papers, Feb. 2016, pp. 46-47.
    [16] P.-Y. Chiang, Z. Wang, O. Momeni, and P. Heydari, “A 300GHz frequency synthesizer with 7.9% locking range in 90nm SiGe BiCMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig. Papers, Feb. 2014, pp. 260-261.
    [17] M. Adnan and E. Afshari, “A 247-to-263.5GHz VCO with 2.6mW peak output power and 1.14% DC-to-RF efficiency in 65nm bulk CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig. Papers, Feb. 2014, pp. 262-263.
    [18] S. Moghadami, F. Hajilou, P. Agrawal, and S. Ardalan, “A 210 GHz fully-integrated OOK transceiver for short-range wireless chip-to-chip communication in 40 nm CMOS technology,” IEEE Trans. Terahertz Sci. Tech., vol. 5, no. 5, pp. 737-741, Sep. 2015.
    [19] P.-Y. Chiang, Z. Wang, O. Momeni, and P. Heydari, “A silicon-based 0.3 THz frequency synthesizer with wide locking range,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2951-2963, Dec. 2014.
    [20] C.-L. Hsieh and J. Y.-C. Liu, “A 210GHz triple-push oscillator in 90nm CMOS,” in IEEE MTT-S International Microwave Symposium, Jun. 2017.
    [21] C.-C. Chen, C.-C. Li, B.-J. Huang, K.-Y. Lin, H.-W. Tsao, and H. Wang, “Ring-based triple-push VCOs with wide continuous tuning range,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2173-2183, Dec. 2009.
    [22] M. M. Abdul-Latif and E. Sanchez-Sinencio, “Low phase noise wide tuning range N-push cyclic-coupled ring oscillators,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1278-1294, Jun. 2012.
    [23] J. Grzyb, Y. Zhao, and U. R. Pfeiffer, “A 288-GHz lens-integrated balanced triple-push source in a 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1751-1761, Jul. 2013.
    [24] P. Liao and R. A. York, “A new phase-shifterless beam scanning technique using arrays of coupled oscillators,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 10, pp. 1810-1815, Oct. 1993.
    [25] J. Zhang, N. Sharma, and K. K. O, “21.5-to-33.4 GHz voltage-controlled oscillator using NMOS switched inductors in CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp. 478-480, Jul. 2014.
    [26] J. Yin and H. C. Luong, “A 57.5-90.1-GHz magnetically tuned multimode CMOS VCO,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1851-1862, Aug. 2013.
    [27] L. Li, P. Reynaert, and M. S. J. Steyaert, “A 60-GHz CMOS VCO using capacitance-splitting and gate-drain impedance-balancing techniques,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 406-413, Feb. 2011.
    [28] M. Nariman, R. Rogougaran, and F. D. Flaviis, “A switched-capacitor mm-wave VCO in 65 nm digital CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., May 2010, pp. 157-160.
    [29] N. Yanay and E. Socher, “Wide tuning-range mm-wave voltage-controlled oscillator employing an artificial magnetic transmission line,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 4, pp. 1342-1352, Apr. 2015.
    [30] H. Jia, B. Chi, L. Kuang, and Z. Wang, “A 47.6-71.0-GHz 65-nm CMOS VCO based on magnetically coupled π-type LC network,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 5, pp. 1645-1657, May 2015.
    [31] H.-C. Chang, X. Cao, U. K. Mishra, and R. A. York, “Phase noise in coupled oscillators: theory and experiment,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 5, pp. 604-615, May 1997.
    [32] T. H. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [33] J. van der Tang, P. van der Ven, D. Kasperkovitz, and A. v. Roermund, “Analysis and design of an optimally coupled 5-GHz quadrature LC oscillator,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 657-661, May 2002.
    [34] A. Hajimiri, S. Limotyrakis, and T. H. Lee, “Jitter and phase noise in ring oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 790-804, Jun. 1999.
    [35] Z. Zong, M. Babaie, and R. B. Staszewski, “A 60 GHz frequency generator based on a 20 GHz oscillator and an implicit multiplier.” IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1261-1273, May 2016.
    [36] S.-K. Kim, C. Choi, C. Cui, B.-S. Kim, and M. Seo, “A W-band signal generation using N-push frequency multipliers for low phase noise,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 10, pp. 710-712, Oct. 2014.
    [37] H. Jia, L. Kuang, Z. Wang, and B. Chi “A W-band injection-locked frequency doubler based on top-injected coupled resonator,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 1, pp. 210-219, Jan. 2016.
    [38] P.-H. Chiang, J.-H. Cheng, Y.-C. Wu, C.-C, Chiong, W.-D. Liu, G.-W. Huang, T.-W. Huang, and H. Wang, “A 206 ~ 220 GHz CMOS VCO using body-bias technique for frequency tuning,” in IEEE MTT-S International Microwave Symposium, May 2015.
    [39] P.-Y. Chiang, O. Momeni, and P. Heydari, “A 200-GHz inductively tuned VCO with -7-dBm output power in 130-nm SiGe BiCMOS,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3666-3672, Oct. 2013.
    [40] A. Moroni, R. Genesi and D. Manstretta, “Analysis and Design of a 54 GHz Distributed “Hybrid” Wave Oscillator Array With Quadrature Outputs,” IEEE J Solid-State Circuits, vol. 49, no. 5, pp. 1158-1172, May 2014.
    [41] F. Behbahani, Y. Kishigami, J. Leete and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J Solid-State Circuits, vol. 36, no. 6, pp. 873-887, Jun 2001.
    [42] Z. Huang, H. C. Luong, B. Chi, Z. Wang and H. Jia, “A 70.5-to-85.5GHz 65nm phase-locked loop with passive scaling of loop filter,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig. Papers, Feb. 2015, pp. 448-449.
    [43] A. Rofougaran, J. Rael, M. Rofougaran and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig. Papers, Feb. 1996, pp. 392-393.
    [44] A. Rofougaran et al., “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-μm CMOS. II. Receiver design,” IEEE J Solid-State Circuits, vol. 33, no. 4, pp. 535-547, Apr 1998.
    [45] N. R. Lanka, S. A. Patnaik and R. A. Harjani, “Frequency-Hopped Quadrature Frequency Synthesizer in 0.13-μm Technology,” IEEE J Solid-State Circuits, vol. 46, no. 9, pp. 2021-2032, Sept. 2011.
    [46] M. Elbadry and R. Harjani, Quadrature Frequency Generation for Wideband Wireless Applications, Springer, 2015.
    [47] X. Yi, C. C. Boon, H. Liu, J. F. Lin, J. C. Ong and W. M. Lim, “A 57.9-to-68.3GHz 24.6mW frequency synthesizer with in-phase injection-coupled QVCO in 65nm CMOS”, IEEE J Solid-State Circuits, vol. 49, no. 2, pp. 347-359, Feb. 2014.
    [48] D. Huang, W. Li, J. Zhou, N. Li and J. Chen, “A Frequency Synthesizer With Optimally Coupled QVCO and Harmonic-Rejection SSBmixer for Multi-Standard Wireless Receiver,” IEEE J Solid-State Circuits, vol. 46, no. 6, pp. 1307-1320, June 2011.
    [49] M. Valla, G. Montagna, R. Castello, R. Tonietto and I. Bietti, “A 72-mW CMOS 802.11a direct conversion front-end with 3.5-dB NF and 200-kHz 1/f noise corner,” IEEE J Solid-State Circuits, vol. 40, no. 4, pp. 970-977, April 2005.
    [50] P. Vancorenland and M. S. J. Steyaert, “A 1.57-GHz fully integrated very low-phase-noise quadrature VCO,” IEEE J Solid-State Circuits, vol. 37, no. 5, pp. 653-656, May 2002.
    [51] M. Vigilante and P. Reynaert, “Analysis and Design of an E-Band Transformer-Coupled Low-Noise Quadrature VCO in 28-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 4, pp. 1122-1132, April 2016.
    [52] U. Decanis, A. Ghilioni, E. Monaco, A. Mazzanti and F. Svelto, “A mm-Wave quadrature VCO based on magnetically coupled resonators,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig. Papers, Feb., 2011, pp. 280-282.
    [53] V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk and P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz Sub-Sampling PLL in 40 nm CMOS,” IEEE J Solid-State Circuits, vol. 50, no. 9, pp. 2025-2036, Sept. 2015.
    [54] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, July 2003.
    [55] P. Andreani, A. Bonfanti, L. Romano and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec 2002.
    [56] P. Andreani and Xiaoyan Wang, “On the phase-noise and phase-error performances of multiphase LC CMOS VCOs,” IEEE J Solid-State Circuits, vol. 39, no. 11, pp. 1883-1893, Nov. 2004.
    [57] H-R Kim, C-Y Cha, S-M Oh, M-S Yang and S-G Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE J Solid-State Circuits, vol. 39, no. 6, pp. 952-955, June 2004.
    [58] A. W. L. Ng and H. C. Luong, “A 1-V 17-GHz 5-mW CMOS Quadrature VCO Based on Transformer Coupling,” IEEE J Solid-State Circuits, vol. 42, no. 9, pp. 1933-1941, Sept. 2007.
    [59] U. Decanis, A. Ghilioni, E. Monaco, A. Mazzanti and F. Svelto, “A Low-Noise Quadrature VCO Based on Magnetically Coupled Resonators and a Wideband Frequency Divider at Millimeter Waves,” IEEE J Solid-State Circuits, vol. 46, no. 12, pp. 2943-2955, Dec. 2011.
    [60] A. Mazzanti, F. Svelto and P. Andreani, “On the amplitude and phase errors of quadrature LC-tank CMOS oscillators,” IEEE J Solid-State Circuits, vol. 41, no. 6, pp. 1305-1313, June 2006.
    [61] B. Razavi, RF Microelectronics 2nd ed., Prentice Hall, 2012, pp. 586-587.
    [62] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [63] B. Razavi., “Design of millimeter-wave CMOS radios: A tutorial,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no.1, pp. 4-16, Jan. 2009.

    QR CODE