簡易檢索 / 詳目顯示

研究生: 王煒傑
論文名稱: 銅基地中析出奈米鐵顆粒相變化及其磁性質研究
指導教授: 張士欽
口試委員: 張士欽
葉安洲
金重勳
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 68
中文關鍵詞: 銅鐵單晶麻田散體相變化再結晶磁滯曲線硬度矯頑場
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電弧爐將純無氧銅錠(99.99wt%)和純鐵錠(99.9wt%)鎔鑄成Cu -1.5 wt% Fe之碗狀鑄錠,用垂直布里吉曼法(Bridgman method)成長出鐵含量1.13 ~ 1.53 wt%的五組銅鐵單晶。利用冷滾軋使銅基地中的γ-Fe析出物誘發麻田散體相變化成為α-Fe,並以VSM量測試樣相變化後,磁滯曲線和感應磁化量的變化,再輔以MFM佐證製程退火和熱處理時間對磁性的影響及變化。從TEM觀察發現製程退火後析出物的粒徑小於60 nm。
    由硬度量測試樣在600⁰C的時效曲線,發現在600⁰C時效16小時試樣仍未達峰時效。使用VSM量測冷加工後試樣的磁滯曲線時,發現隨著時效時間的增加,硬度和矯頑場皆會快速的上升,且進一步製程退火後,試樣的磁化量也會明顯再增加。在時效前先給予單晶試樣微小的預先冷加工量(ε< 8%),增加單晶內試樣差排的數量,以改變試樣在後續的時效熱處理時,鐵原子在銅基地析出的數量和粒徑大小。若在時效析出前給予單晶試樣大量的預冷加工(ε> 25%),在後續的熱處理時試樣會同時發生退火和析出的現象,藉由磁性量測、金相觀察和硬度變化,發現矯頑場、再結晶晶粒的數量與完美程度因析出物粗大的影響反而隨熱處理溫度的增加變少,且銅鐵單晶的再結晶溫度比起純同提高許多。使用冷滾軋和單軸向壓應變兩種不同的冷加工方式,但相同的熱處理條件(600⁰C/ 2hr),比較冷加工的方式對誘發麻田散體相變化的差異,發現應變量達90%時,試樣的感應磁化量仍無法達飽和。以及不同含鐵量的試樣但同樣在600⁰C時效二小時,施加相同的外加磁場下,發現在小應變量(ε< 10%)時,不同含鐵量試樣的磁化量差異不明顯。


    一. 前言 ------------------------------------------------ 1 二. 文獻回顧 2.1 奈米侷限的意義 ----------------------------------- 2 2.2 銅鐵合金 ------------------------------------------ 2 三. 實驗步驟 3.1 單晶成長和成份分析 ---------------------------------- 6 3.2 熱處理 ------------------------------------ 9 3.3 冷加工和硬度量測 ------------------------------------- 9 3.4 金相、磁力顯微鏡(MFM)、穿透式電子顯微鏡(TEM)試樣製備 ------10 3.5 震盪試樣磁量儀(VSM)試樣製備 --------------------------- 10 四. 結果與討論 4.1銅鐵合金材料磁滯曲線的主要形式 -------------------------- 11 4.2銅鐵合金單晶鑒定 --------------------------------------- 13 4.3 Cu-1.53 wt%Fe (Sample-5) 4.3.1應變誘發麻田散體相變化 ------------------------------- 14 4.3.2製程退火 -------------------------------------------- 18 4.3.3冷加工與製程退火後析出物的粒徑大小 ------------------ 21 4.3.4製程退火後試樣的磁性分析 ------------------------------ 23   4.4 Cu-1.41 wt%Fe (Sample-4) 4.4.1時效時間對單晶硬度和磁性的影響 ----------------------- 25 4.4.2冷滾軋加工後的磁性質 ------------------------------ 27 4.5 Cu-1.32 wt% Fe (Sample-3) 4.5.1少量預先冷加工對析出的影響 ---------------------------- 36 4.5.2預先冷加工對磁性的影響 ------------------------------- 37 4.6 Cu-1.24 wt% Fe (Sample-2) 4.6.1大量塑性變形對固溶銅鐵合金磁性質的影響 -------------- 40 4.6.2固溶合金在大量塑性變形後的熱處理對硬度影響 ------------- 41 4.6.3再結晶金相變化 -------------------------------------- 43 4.6.4磁性變化 ------------------------------------------- 49 4.7 Cu-1.13 wt% Fe (Sample-1) 4.7.1單軸向冷加工的影響 ----------------------------------- 56 4.7.2成份的影響 ----------------------------------------- 60 五. 結論 ------------------------------------------------ 61 參考文獻 ------------------------------------------------ 63

    1.C. M. Hurd. "Further Evidence of Nagaoka's Bound State For Conduction Electrons in Dilute Alloys" Physical Review Letters, no. 25 (1967): 1127-1129.

    2.M. D. Daybell. and W. A. Steyert. "Susceptibility and Resistivity Studies of Localized Iron Moments in Copper" Physical Review, no. 2 (1968):536-544.

    3.James B. Boyce and Charles P. Slichter. "Conduction-electron spin density around Fe impurities in Cu above and below the Kondo temperature" Physical Review B, no. 1 (1976): 379-396.

    4.Minfa Lin, G. B. Olson and Morris Cohen "Homogeneous Martensitic Nucleation inFe-Co Precipitates Formed in a Cu Matrix" Actametall, mater. , No. 1, (1993):253-263.

    5.Puri, P., and V. Yang. "Effect of Particle Size on Melting of Aluminum at Nano Scales." Journal of Physical Chemistry C 111, no. 32 (2007): 11776-11783.

    6.Liu, Z. W., Y. Bando, M. Mitome, and J. H. Zhan. "Unusual Freezing and Melting of Gallium Encapsulated in Carbon Nanotubes." Physical Review Letters 93, no. 9 (2004).

    7.Gautam, U. K., Y. Bando, L. Bourgeois, X. S. Fang, P. M. F. J. Costa, J. H. Zhan, and D. Golberg. "Synthesis of Metal-Semiconductor Heterojunctions inside Carbon Nanotubes." Journal of Materials Chemistry 19, no. 25 (2009): 4414-4420.

    8.Golberg, D., P. M. F. J. Costa, M. Mitome, S. Hampel, D. Haase, C. Mueller, A. Leonhardt, and Y. Bando. "Copper-Filled Carbon Nanotubes: Rheostatlike Behavior and Femtogram Copper Mass Transport." Advanced Materials 19, no. 15 (2007): 1937-1942.

    9.Liu, Z. W., Y. H. Gao, and Y. Bando. "Highly Effective Metal Vapor Absorbents Based on Carbon Nanotubes." Applied Physics Letters 81, no. 25 (2002): 4844-4846.

    10.Rodriguez-Fernandez, J., M. Fedoruk, C. Hrelescu, A. A. Lutich, and J. Feldmann. "Triggering the Volume Phase Transition of Core-Shell Au Nanorod - Microgel Nanocomposites with Light." Nanotechnology 22, no. 24 (2011).

    11.Jin, Z. H., H. W. Sheng, and K. Lu. "Melting of Pb Clusters without Free Surfaces." Physical Review B 60, no. 1 (1999): 141-149.

    12.Adachi, H., K. Osamura, S. Ochiai, J. Kusui, and K. Yokoe. "Mechanical Property of Nanoscale Precipitate Hardening Aluminum Alloys." Scripta Materialia 44, no. 8-9 (2001): 1489-1492.

    13.Wusatowska-Sarnek, A. M., T. Sakai, and H. Miura. "Martensitic Transformation of Iron Particles Embedded in Copper Matrix During Tension in Crystals Previously Deformed on Another Slip System." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 319, (2001): 224-228.

    14.Lopez, V. M., and K. Hirano. "Martensitic-Transformation of Gamma-Fe Precipitates in a Cu 1.5 at Percent Fe Alloy." Journal of Materials Science 29, no. 18 (1994): 4802-4807.

    15.Kinsman, K. R., J. W. Sprys, and R. J. Asaro. "Structure of Martensite in Very Small Iron-Rich Precipitates." Acta Metallurgica 23, no. 12 (1975): 1431-1442.

    16.Easterli.Ke, and P. R. Swann. "Nucleation of Martensite in Small Particles." Acta Metallurgica 19, no. 2 (1971): 117-121.

    17.Fujii, T., M. Kato, and T. Mori. "Coarsening of Incoherent Alpha-Fe Particles in a Cu-Fe Alloy." Materials Transactions Jim 32, no. 3 (1991): 229-236.

    18.Kita, K., and R. Monzen. "Coarsening of Spherical Alpha-Fe Particles in a Cu Matrix." Scripta Materialia 43, no. 11 (2000): 1039-1043.

    19.Monzen, R., T. Tada, T. Sea, and K. Higashimine. "Ostwald Ripening of Rod-Shaped Alpha-Fe Particles in a Cu Matrix." Materials Letters 58, no. 14 (2004): 2007-2011.

    20.Watanabe, Y., M. Kato, and A. Sato. "Growth-Kinetics and Martensitic-Transformation of Large Fe Particles in a Cu-1.5 Mass-Percent Fe Alloy." Journal of Materials Science 26, no. 16 (1991): 4307-4312.

    21.Kato, M., C. Toksoy, C. S. L. Pak, W. Pratt, and K. Mukherjee. "Magnetization Measurement Associated with γ-α Martensitic-Transformation of Fe Particles in a Cu-1.59 Pct Fe Alloy." Metallurgical Transactions a-Physical Metallurgy and Materials Science 15, no. 4 (1984): 755-756.

    22.Watanabe, Y., Y. Takada, H. Miura, M. Kato, and A. Sato. "Temperature-Dependence of the Amount of Transformed Fe Particles in a Cu-1.5-Mass-Percent Fe Alloy." Journal of Materials Science 28, no. 17 (1993): 4578-4582.

    23.Watanabe, Y., J. Murakami, and H. Miura. "Effect of Annealing on Saturation Magnetization in Deformed Cu-Fe Alloys with Transformed Fe Particles." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 338, no. 1-2 (2002): 299-304.

    24.Watanabe, C., T. Fujii, S. Onaka, and M. Kato. "Low-Cycle Fatigue and Microstructure of Cu-Fe Single Crystals with a Double-Slip Orientation." International Journal of Fatigue 24, no. 7 (2002): 795-802.

    25.Watanabe, Y., H. Miura, M. Kato, and A. Sato. "Yield Stress of Aged Cu-Fe Alloy Single-Crystals at Low-Temperatures." Journal of Materials Science Letters 13, no. 12 (1994): 922-924.

    26.Matsuura, K., M. Tsukamoto, and K. Watanabe. "The Work-Hardening of Cu-Fe Alloy Single Crystals Containing Iron Precipitates." Acta Metallurgica 21, no. 8 (1973): 1033-1044.

    27.Monzen, R., A. Sato, and T. Mori. "Structural-Changes of Iron Particles in a Deformed and Annealed Cu-Fe Alloy Single-Crystal." Transactions of the Japan Institute of Metals 22, no. 1 (1981): 65-73.

    28.Heinrich, A., T. Al-Kassab, and R. Kirchheim. "Investigation of the Early Stages of Decomposition of Cu-0.7at.% Fe with the Tomographic Atom Probe." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 353, no. 1-2 (2003): 92-98.

    29.Soisson, F., and C. C. Fu. "Cu-Precipitation Kinetics in Alpha-Fe from Atomistic Simulations: Vacancy-Trapping Effects and Cu-Cluster Mobility." Physical Review B 76, no. 21 (2007): 214102(12).

    30.Denney, J. M. "Precipitate Kinetics and Structure in a Cu - 2.4wt% Fe Alloy." Acta Metallurgica 4, no. 6 (1956): 586-592.

    31.Qin, W., Z. H. Chen, Y. H. Zhuang, and Y. W. Du. "Possibility of the Martensitic Transformation Triggered by Thermal Fluctuation." Journal of Alloys and Compounds 340, no. 1-2 (2002): 114-117.

    32.Qin, W., Y. W. Du, Y. H. Zhuang, and Z. H. Chen. "A Thermodynamic Explanation for the Martensitic Transformation of Nanometer-Sized Gamma-Iron Particles Embedded in a Copper Matrix." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 336, no. 1-2 (2002): 270-273.

    33.Lifshitz, I. M., and V. V. Slyozov. "The Kinetics of Precipitation from Supersaturated Solid Solutions." Journal of Physics and Chemistry of Solids 19, no. 1-2 (1961): 35-50.

    34.Wagner, C. "Theorie Der Alterung Von Niederschlagen Durch Umlosen (Ostwald-Reifung)." Zeitschrift Fur Elektrochemie 65, no. 7-8 (1961): 581-591.

    35.P. R. Subramanian, "Phase Diagrams of Binary Copper Alloys (Monograph series on alloy phase diagrams)", ASM International published, (1993).

    36.Olson, G., and Morris Cohen. "A General Mechanism of Martensitic Nucleation: Part II. FCC → BCC and Other Martensitic Transformations." Metallurgical and Materials Transactions A 7, no. 11 (1976): 1905-1914.

    37.Olson, G., and Morris Cohen. "A General Mechanism of Martensitic Nucleation: Part III. Kinetics of Martensitic Nucleation." Metallurgical and Materials Transactions A 7, no. 12 (1976): 1915-1923.

    38.Saji, S., Hori, S.,and Mima, G. "Ageing Characteristics of Cu-Fe Alloys" Trans. Japan Inst. Metals. , no. 1 (1973): 82-88.

    39.Kato, M., A. Nishimura, T. Matsuyama, and H. Horie. "Cyclic Deformation - Behavior of a Cu-1.5 Mass-Percent-Fe Alloy with Precipitate Iron Particles." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 111, (1989): 17-25.

    40.Luborsky, F. E., and T. O. Paine. "Coercive Force and Remanence of 25 Å to 2000 Å Diameter Cobalt, Iron, and Iron-Cobalt Alloy." Journal of Applied Physics 31, no. 5 (1960): S68-S70.

    41.G. Salje and M. Feller‐Kniepmeier. "The diffusion and solubility of iron in copper" J. Appl. Phys. 49, 229 (1978): 229-232.

    42.Mackliet, C. A. "Diffusion of Iron, Cobalt, and Nickel in Single Crystals of Pure Copper." Physical Review 109, no. 6 (1958): 1964-1970.

    43.Ishida, I., and M. Kiritani. "The Gamma-Alpha Transformation of Fine Iron Precipitates and Magnetic-Properties in Cold-Rolled Copper-Base Alloys." Transactions of the Japan Institute of Metals 27, no. 8 (1986): 561-575.

    44.L.C. Cullity. "Introduction to Magnetic Materials" Addison-Wesley published, (1972).

    45.Nestorović Svetlana, Ivanić Lj., Marković Desimir. "Influence of time of annealing on anneal hardening effect of a cast Cu-Zn alloy" Journal of Mining and Metallurgy B: Metallurgy, no. 4 (2003): 489-497.

    46.Field, D. P., L. T. Bradford, M. M. Nowell, and T. M. Lillo. "The Role of Annealing Twins During Recrystallization of Cu." Acta Materialia 55, no. 12 (2007): 4233-4241.

    47.Berghout, C. "Uber Die Suszeptibilitat Und Den Elektrischen Widerstand Homogener Und Inhomogener Kupfer-Eisen-Legierungen." Zeitschrift Fur Metallkunde 52, no. 3 (1961): 179-186.

    48.Bennett, L. H., and Swartzen.Lj. "On Interpretation of Mossbauer Effect Spectra as Related to Constitution of Cu-Ni-Fe Alloys." Acta Metallurgica 18, no. 5 (1970): 485-498.

    49.Li, C. H., D. A. Porter, K. E. Easterling, and D. J. Smith. "A Lattice Resolution Study of the Martensitic-Transformation of Small Iron Particles in a Copper Matrix." Acta Metallurgica 33, no. 2 (1985): 317-328.

    50.Cheng, S., Y. H. Zhao, Y. T. Zhu, and E. Ma. "Optimizing the Strength and Ductility of Fine Structured 2024 Al Alloy by Nano-Precipitation." Acta Materialia 55, no. 17 (2007): 5822-5832.

    51.Reza Abbaschian, Robert E. Reed-Hill. "Physical Metallurgy Principles" The Pws-Kent Series in Engineering published, (1991).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE