簡易檢索 / 詳目顯示

研究生: 蘇東垣
論文名稱: 玻璃與矽晶雷射熔接問題之熔解池形狀演變研究
Evolution of melting pool in glass-silicon bonding with transmission laser
指導教授: 李雄略
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 54
中文關鍵詞: 玻璃矽晶穿透雷射微機電封裝
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的為研究使用雷射於玻璃與矽晶的熔接問題。此問題是利用雷射在矽晶表面供應的熱源,造成矽晶表面熔解並達到與玻璃結合的目的。
    理論分析方面,本文使用一組圓柱座標能量方程式同時描述玻璃與矽晶的熔接現象,其中,為了分析矽晶表面熱源和熔解的現象,引進潛熱和雷射熱源模型以單位體積熱源的型式加入能量方程式中。數值方法方面,引用積分法與體積分率法分別處理相變化過程中的物理性質不連續現象以及潛熱連續釋放現象,並且由積分法之特性,將玻璃與矽晶整合成單一計算區域,使得程式的撰寫更為方便。
    結論方面,本文模擬的熔解半徑對應Tseng and Park [12-13] 實驗的熔解半徑是吻合的,模擬的熔解半徑為 。透過探討改變照射範圍以及照射時間對熔解半徑之影響,在固定入射能量以及不氣化的條件下,發現玻璃與矽晶的熔接過程擁有最佳的熔接範圍以及最佳的照射範圍與照射時間。


    摘要 I 誌謝 II 目錄 III 圖目錄 V 符號說明 VII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究目的 4 第二章 理論分析 5 2.1 問題描述 5 2.2 統御方程式 6 2.3 初始條件與邊界條件 8 2.4 無因次化 9 2.5 無因次化初始與邊界條件 11 第三章 數值方法 12 3.1網格系統 12 3.2 統御方程式之差分 13 3.3 潛熱項之處理方法 16 3.4 計算流程 18 第四章 結果與討論 20 4.1 參數設定 20 4.2 網格設定 21 4.3 收斂標準 21 4.4 矽晶熔解池隨時間演變之分析 22 4.5玻璃與矽晶溫度場分析與矽晶最高溫度隨時間之變化 24 4.6熔解寬度與深度隨時間之變化 25 4.7 矽晶表面熔解持續時間之分析 25 4.8 特徵時間 影響之分析 26 4.9 特徵半徑 影響之分析 28 4.10 結合半徑 29 第五章 結論 30 參考文獻 31

    [1] Burgener, M.L., and Reedy, R.E., 1982, “Temperature distributions produced in a two-layer structure by a scanning cw laser or electro beam,” J. Appl. Phys., 53, pp. 4357-4363.
    [2] Grigoropoulos, C. P., and Buckholz, R. H., 1986, “A heat transfer algorithm for the laser-induced melting and recrystallization of thin silicon layers,” J. Appl. Phys., 60, pp. 2304-2309.
    [3] Grigoropoulos, C. P., Emery, A. F., and Wipf, E. P., 1990, “Heat transfer in thin silicon film melting by laser line sources,” Int. J. Heat Mass Transfer, 33, pp. 797-803.
    [4] Xu, X., Grigoropoulos, C. P., and Russo, R. E., 1995, “Transient Temperature During Pulsed Excimer Laser Heating Thin Polysilicon Film Obtained by Optical Reflectivity Measurement,” ASME J. Heat Transfer, 117, pp. 17-24.
    [5] Jellison, G. E., Jr., and Modine, F. A., 1982, “Optical absorption of silicon between 1.6 and 4.7 eV at elevated temperatures,” Appl. Phys. Lett., 41, pp. 180-182.
    [6] Jellison, G. E., Jr., and Lowndes, D. H., 1982, “Optical absorption coefficient of silicon at 1.152μ at elevated temperatures,” Appl. Phys, Lett., 41, pp.594-596.
    [7] Jellison, G. E., Jr., and Lowndes, D. H., 1987, “Measurements of the optical properties of liquid silicon and germanium using nanosecond time-resolved ellipsometry,” Appl. Phys. Lett., 51, pp. 352-354.
    [8] Xu, X., Grigoropoulos, C. P., and Russo, R. E., 1995, “Heat Transfer in Excimer Laser Melting of Thin Polysilicon Layers,” ASME, J. Heat Transfer, 117, pp. 708-715.
    [9] Luo, C., and Lin, L., 2002, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sensors and Actuators A, 97-98, pp. 398-404.
    [10] Wild, M. J., Gillner, A., and Poprawe, R., 2001, “Locally selective bonding of silicon and glass with laser,” Sensor and Actuators A, 93, pp.63-69.
    [11] Theppakuttai, S., Shao, D. B., and Chen, S. C., 2004, “Localized Laser Transmission Bonding for Microsystem Fabrication and Packaging,” J. Manuf. Processes, 6, pp. 24-31.
    [12] Tseng, A. A., and Park, J. S., 2006, “Effects of surface roughness and contact pressure on wafer bonding strength using transmission laser bonding technique,” J. Microlith., Microfab., Microsyst., 5(4), 043013.
    [13] Tseng, A. A., Park, J. S., Vakanas, G. P., Wu, H.T., Raudensky, M., and Chen, T. P., 2006, “Influences of interface oxidation on transmission laser bonding of wafers of microsystem packaging,”
    [14] Lee, S. L., and Tzong, R. Y., 1991 “An enthalpy formulation for phase change problems with a large thermal diffusivity jump across the interface,” Int. J. Heat Mass Transfer., 34, pp. 1491-1502.
    [15] Tzong, R. Y., and Lee, S. L., 1992, “Solidification of arbitrarily shaped casting in mold-casting system,” Int. J. Heat Mass Transfer., 35, pp.2795-2803.
    [16] Lee, S. L., 1989, “A Strongly-Implicit Solver for Two-Dimensional Elliptic Differential Equations,” Numerical Heat Transfer, 16, pp. 161-178.
    [17] Hull, R. 1999, “Properties of crystalline silicon,” INSPEC publication, London.
    [18] Bansal, N. P. 1986, “Handbook of Glass Properties,” FL: Academic Press.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE