研究生: |
許子厚 Hsu, Tzu-Hou |
---|---|
論文名稱: |
能量密度及熱處理對擇區雷射熔融積層製造17-4析出強化不鏽鋼麻田散相比例及機械性質之影響 Effects of energy density and post heat-treatment on martensitic phase fraction and mechanical properties of selective laser melted 17-4 PH stainless steel |
指導教授: |
葉安洲
Yeh, An-Chou |
口試委員: |
康永昌
KANG, YUNG-CHANG 陳志鵬 CHEN, CHIH-PENG 蔡哲瑋 TSAI, TSE-WEI |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 17-4析出強化不鏽鋼 、雷射擇區熔融積層製造 、能量密度 、麻鐵散鐵相 、熱處理 、機械性質 |
外文關鍵詞: | 17-4 PH stainless steel, Selective laser melting, Energy density, Martensitic phase fraction, Heat treatment, Mechanical properties |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
17-4析出強化不鏽鋼是最廣泛應用的工程材料之一,並為現今雷射熔融積層製造的主要研究課題。不同於傳統製程,雷射熔融積層製造中較高的冷卻速率對於材料的相組成以及微結構有著極大的影響。本研究使用眾多雷射參數,藉由改變雷射線距、掃描速度以及功率產生由不同雷射能量密度製造之試片。藉由相定量分析得知受雷射能量密度及後熱處理製程影響之殘留沃斯田鐵及麻田散鐵相比例。維氏硬度測試及拉伸測試用於釐清對於機械性質所造成之影響。本研究證實了雷射能量密度及後熱處理製程可調控17-4析出強化不鏽鋼之麻田散鐵相比例以及機械性質,提供了17-4析出強化不鏽鋼雷射熔融積層製造上的新觀點。
17-4 PH stainless steel (17-4 PH SS) is one of most widely used engineering material and has been a subject for Selective Laser Melting (SLM) process study. Different from traditional manufacturing process, SLM provide ultra-high cooling rate, which would dramatically influence the phase formation and microstructure of the built material. In this work, numerous scanning parameters including different laser hatch distance, scan speed and power were used to fabricate SLM specimens with variant energy density. Phase fraction analysis via Quantitative Phase Analysis (QPA) method revealed proportion of retained austenite and martensite phases influenced by energy density and post heat-treatment. Vickers hardness test and tensile test were performed to clarify the effects on mechanical properties. This work demonstrates that energy density and post heat-treatment can control the martensitic phase fraction and mechanical properties, providing new prospect on SLM manufacturing process for 17-4 PH stainless steel.
[1] J. Wang, H. Zou, C. Li, R. Zuo, S. Qiu, B. Shen, Relationship of microstructure transformation and hardening behavior of type 17-4 PH stainless steel, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 13 (2006) 235-239.
[2] K. Antony, Aging reactions in precipitation hardenable stainless steel, JOM, 15 (1963) 922-927.
[3] H. Rack, D. Kalish, The strength, fracture toughness, and low cycle fatigue behavior of 17-4 PH stainless steel, Metallurgical Transactions, 5 (1974) 1595-1605.
[4] C. Hsiao, C. Chiou, J. Yang, Aging reactions in a 17-4 PH stainless steel, Materials Chemistry and Physics, 74 (2002) 134-142.
[5] U. Viswanathan, S. Banerjee, R. Krishnan, Effects of aging on the microstructure of 17-4 PH stainless steel, Materials Science and Engineering: A, 104 (1988) 181-189.
[6] H. Nakagawa, T. Miyazaki, Effect of retained austenite on the microstructure and mechanical properties of martensitic precipitation hardening stainless steel, Journal of materials science, 34 (1999) 3901-3908.
[7] M. Murayama, K. Hono, Y. Katayama, Microstructural evolution in a 17-4 PH stainless steel after aging at 400 C, Metallurgical and Materials Transactions A, 30 (1999) 345-353.
[8] G. Yeli, M.A. Auger, K. Wilford, G.D. Smith, P.A. Bagot, M.P. Moody, Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties, Acta Materialia, 125 (2017) 38-49.
[9] L. Facchini, N. Vicente, I. Lonardelli, E. Magalini, P. Robotti, A. Molinari, Metastable Austenite in 17–4 Precipitation‐Hardening Stainless Steel Produced by Selective Laser Melting, Advanced Engineering Materials, 12 (2010) 184-188.
[10] T. LeBrun, T. Nakamoto, K. Horikawa, H. Kobayashi, Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel, Materials & Design, 81 (2015) 44-53.
[11] T. Vilaro, C. Colin, J.-D. Bartout, As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metallurgical and Materials Transactions A, 42 (2011) 3190-3199.
[12] H.K. Rafi, D. Pal, N. Patil, T.L. Starr, B.E. Stucker, Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting, Journal of materials engineering and performance, 23 (2014) 4421-4428.
[13] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies, Journal of Materials Science & Technology, 28 (2012) 1-14.
[14] L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo, Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting, Journal of Materials Research and Technology, 1 (2012) 167-177.
[15] S. Cheruvathur, E.A. Lass, C.E. Campbell, Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure, Jom, 68 (2016) 930-942.
[16] A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian, Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel, International Journal of Fatigue, 94 (2017) 218-235.
[17] A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian, Mechanical and microstructural properties of selective laser melted 17-4 PH stainless steel, in: ASME 2015 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2015, pp. V02AT02A014-V002AT002A014.
[18] R. Rashid, S. Masood, D. Ruan, S. Palanisamy, R.R. Rashid, M. Brandt, Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by selective laser melting (SLM), Journal of Materials Processing Technology, 249 (2017) 502-511.
[19] N. Makoana, H. Moller, H. Burger, M. Tlotleng, I. Yadroitsev, Evaluation of single tracks of 17-4PH steel manufactured at different power densities and scanning speeds by selective laser melting, South African Journal of Industrial Engineering, 27 (2016) 210-218.
[20] M. Averyanova, E. Cicala, P. Bertrand, D. Grevey, Experimental design approach to optimize selective laser melting of martensitic 17-4 PH powder: part I–single laser tracks and first layer, Rapid Prototyping Journal, 18 (2012) 28-37.
[21] Z. Hu, H. Zhu, H. Zhang, X. Zeng, Experimental investigation on selective laser melting of 17-4PH stainless steel, Optics & Laser Technology, 87 (2017) 17-25.
[22] A.S.H. Corporation, 17-4 PH®. Stainless Steel http://www.aksteel.com/sites/default/files/2018-01/174ph201706.pdf, (2017).
[23] A.T. Incorporated, Stainless Steel AL 17-4™ Precipitation Hardening Alloy technical data https://www.atimetals.com/Products/Pages/ati-17-4.aspx, (2006).
[24] U. Viswanathan, P. Nayar, R. Krishnan, Kinetics of precipitation in 17–4 PH stainless steel, Materials science and technology, 5 (1989) 346-349.
[25] M. Free, Dimensional Contraction of 17-4 PH Stainless Steel https://pmpaspeakingofprecision.com/2012/02/28/dimensional-contraction-of-17-4-ph-stainless-steel/, (2012).
[26] D.H. Herring, THE HEAT TREAT DOCTOR: Stainless Steels Part Two: Heat Treatment Techniques, (2006).
[27] W.F. Smith, Structure and properties of engineering alloys, McGraw-Hill, 1993.
[28] M. Miller, M. Burke, Characterization of copper precipitation in a 17/4 PH steel: a combined APFIM/TEM study, in, Oak Ridge National Lab., TN (USA), 1991.
[29] J.-H. Wu, C.-K. Lin, Tensile and fatigue properties of 17-4 PH stainless steel at high temperatures, Metallurgical and materials transactions A, 33 (2002) 1715-1724.
[30] G. Worrall, J. Buswell, C. English, M. Hetherington, G. Smith, A study of the precipitation of copper particles in a ferrite matrix, Journal of Nuclear Materials, 148 (1987) 107-114.
[31] P. Othen, M. Jenkins, G. Smith, High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe, Philosophical magazine A, 70 (1994) 1-24.
[32] H.H. Bajguirani, C. Servant, G. Cizeron, TEM investigation of precipitation phenomena occurring in PH 15-5 alloy, Acta metallurgica et materialia, 41 (1993) 1613-1623.
[33] A. Seko, S.R. Nishitani, I. Tanaka, H. Adachi, E.F. Fujita, First-principles calculation on free energy of precipitate nucleation, Calphad, 28 (2004) 173-176.
[34] A. Seko, N. Odagaki, S.R. Nishitani, I. Tanaka, H. Adachi, Free-energy calculation of precipitate nucleation in an Fe-Cu-Ni alloy, Materials transactions, 45 (2004) 1978-1981.
[35] O.I. Gorbatov, Y.N. Gornostyrev, P.A. Korzhavyi, A.V. Ruban, Effect of Ni and Mn on the formation of Cu precipitates in α-Fe, Scripta Materialia, 102 (2015) 11-14.
[36] R. Cheary, Y. Ma-Sorrell, Quantitative phase analysis by X-ray diffraction of martensite and austenite in strongly oriented orthodontic stainless steel wires, Journal of materials science, 35 (2000) 1105-1113.
[37] C.F. Jatczak, Retained Austenite and its Measurement by X-ray Diffraction, in, SAE Technical Paper, 1980.
[38] L. Lutterotti, Quantitative Phase Analysis: Method Developments, in: Uniting Electron Crystallography and Powder Diffraction, Springer, 2012, pp. 233-242.
[39] A. Standard, Standard practice for x-ray determination of retained austenite in steel with near random crystallographic orientation, in: American Society for Testing and Materials, 2003.
[40] J. Wang, H. Zou, C. Li, S.-y. Qiu, B.-l. Shen, The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350 C, Materials Characterization, 57 (2006) 274-280.
[41] A. Jahn, A. Kovalev, A. Weiß, P.R. Scheller, Influence of Manganese and Nickel on the α´ Martensite Transformation Temperatures of High Alloyed Cr‐Mn‐Ni Steels, steel research international, 82 (2011) 1108-1112.
[42] H.N. Han, C.G. Lee, C.-S. Oh, T.-H. Lee, S.-J. Kim, A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel, Acta Materialia, 52 (2004) 5203-5214.
[43] J.E. G.H, F.C. Hull, The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18-8-type stainless steel, 1953.
[44] F. Monkman, Computation of Ms for stainless steels, 1957.
[45] F.B. Pickering, Physical metallurgy and the design of steels, Applied Science Publishers, 1978.
[46] Q. Dai, X. Cheng, Y. Zhao, X. Luo, Z. Yuan, Design of martensite transformation temperature by calculation for austenitic steels, Materials characterization, 52 (2004) 349-354.
[47] Y. Liu, Y. Yang, D. Wang, A study on the residual stress during selective laser melting (SLM) of metallic powder, The International Journal of Advanced Manufacturing Technology, 87 (2016) 647-656.
[48] M. Matsumoto, M. Shiomi, K. Osakada, F. Abe, Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing, International Journal of Machine Tools and Manufacture, 42 (2002) 61-67.
[49] M. Rombouts, J.-P. Kruth, L. Froyen, P. Mercelis, Fundamentals of selective laser melting of alloyed steel powders, CIRP Annals-Manufacturing Technology, 55 (2006) 187-192.
[50] I. Yadroitsev, I. Yadroitsava, Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting, Virtual and Physical Prototyping, 10 (2015) 67-76.
[51] A. Nickel, D. Barnett, F. Prinz, Thermal stresses and deposition patterns in layered manufacturing, Materials Science and Engineering: A, 317 (2001) 59-64.
[52] Z. Guo, N. Saunders, P. Miodownik, J.-P. Schillé, Modelling phase transformations and material properties critical to the prediction of distortion during the heat treatment of steels, International Journal of Microstructure and Materials Properties, 4 (2009) 187-195.
[53] J.-P. Schillé, Z. Guo, N. Saunders, A.P. Miodownik, Modeling Phase Transformations and Material Properties Critical to Processing Simulation of Steels, Materials and Manufacturing Processes, 26 (2011) 137-143.
[54] U. Diekmann, Calculation of steel data using JMatPro, COMAT2012, 21 (2012) 11.
[55] Z. Guo, N. Saunders, A.P. Miodownik, J.-P. Schillé, Introduction of materials modelling into processing simulation–towards true virtual design and simulation, International Journal of Metallurgical Engineering, 2 (2013) 198-202.
[56] F.S. Marquis, Proceedings of the 8th Pacific Rim International Conference on Advanced Materials and Processing (PRICM-8), Springer, 2017.
[57] S.-j. Dai, W. Yu, C. Feng, X.-q. Yu, Y.-f. Zhang, Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software, Transactions of Nonferrous Metals Society of China, 23 (2013) 3027-3032.
[58] S.S. Ltd., JMatPro - PRACTICAL SOFTWARE FOR MATERIALS PROPERTIES https://www.sentesoftware.co.uk/, (2017).
[59] N. Saunders, U. Guo, X. Li, A. Miodownik, J.-P. Schillé, Using JMatPro to model materials properties and behavior, Jom, 55 (2003) 60-65.
[60] H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, B. Stucker, Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel, in: 2013 Solid Freeform Fabrication Symposium, 2013, pp. 474.
[61] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.-P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Materialia, 58 (2010) 3303-3312.
[62] K. Singh, S. Sangal, G. Murty, Hall–Petch behaviour of 316L austenitic stainless steel at room temperature, Materials science and technology, 18 (2002) 165-172.
[63] J. Cahoon, W. Broughton, A. Kutzak, The determination of yield strength from hardness measurements, Metallurgical transactions, 2 (1971) 1979-1983.
[64] E. Pavlina, C. Van Tyne, Correlation of yield strength and tensile strength with hardness for steels, Journal of Materials Engineering and Performance, 17 (2008) 888-893.
[65] J.T. Busby, M.C. Hash, G.S. Was, The relationship between hardness and yield stress in irradiated austenitic and ferritic steels, Journal of Nuclear Materials, 336 (2005) 267-278.
[66] W. Wu, L. Hwu, D. Lin, J. Lee, The relationship between alloying elements and retained austenite in martensitic stainless steel welds, Scripta Materialia, 42 (2000) 1071-1076.
[67] L. Murr, S. Quinones, S. Gaytan, M. Lopez, A. Rodela, E. Martinez, D. Hernandez, E. Martinez, F. Medina, R. Wicker, Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications, Journal of the mechanical behavior of biomedical materials, 2 (2009) 20-32.