簡易檢索 / 詳目顯示

研究生: 林義心
Lim, Yee-Shin
論文名稱: 胃幽門螺旋桿菌26695菌株之D型阿拉伯糖-5-磷酸異構酶由HP1429基因所表現之特性研究
Characterization of Helicobacter pylori 26695 D-arabinose 5-phosphate isomerase encoded by HP1429
指導教授: 高茂傑
Kao, Mou-Chieh
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 61
中文關鍵詞: 胃幽門螺旋桿菌D型阿拉伯糖-5-磷酸異構□HP1429脂多醣類
外文關鍵詞: Helicobacter pylori, D-arabinose 5-phosphate isomerase, HP1429, lipopolysaccharide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Helicobacter pylori (H. pylori) is a major pathogen residing in human stomach. Chronic infection of this bacterium can cause gastric ulcer, duodenal ulcer, gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. The outer membrane of H. pylori anchors the lipopolysaccharide (LPS) which is present in many Gram-negative bacteria. LPS not only contributes to the structural integrity of the outer membrane but also induces immune responses from the host cells. The interaction between LPS and the host cell is believed to be related to disease development. Bioinformatic studies on the open reading frame of HP1429 suggested that the product of this gene may be involved in the synthesis of a conserved molecule 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) which is present in the core oligosaccharide region of the LPS and is also the building block of the polysialic acid capsule. The Kdo biosynthesis starts with the conversion of a pentose pathway intermediate D-ribulose 5-phosphate (Ru5P) to D-arabinose 5-phosphate (A5P), and the reaction is catalyzed by an D-arabinose 5-phosphate isomerase (API). In this study, HP1429 was cloned, overexpressed and the functions of the gene product were characterized. The purified recombinant HP1429 protein has a molecular weight of 37,814 Dalton, and appears to be a tetramer. This protein has an optimal activity at pH 7.0, and is sensitive to inhibition by zinc cations with an estimated IC50 of 30 - 50 μM. This enzyme is specific for interconversion of A5P and Ru5P, with apparent Km values of 0.97 ± 0.18 mM for A5P and 0.46 ± 0.02 mM for Ru5P. The apparent kcat in the A5P to Ru5P direction is 179.3 ± 3.3 s-1 and 74.5 ± 1.6 s-1 in the Ru5P to A5P direction. The equilibrium constant (Keq) is 0.50 (Ru5P/A5P). Homology search showed that HP1429 might be the only gene coding for API in H. pylori 26695 strain.


    Table of Contents 摘要.......................1 Abstract...................2 Abbreviations list.........5 Introduction...............6 Materials and methods.....15 Results...................23 Discussions...............27 References................31 Tables....................39 Figures...................43

    1. Olson, J.W. and R.J. Maier, Molecular Hydrogen as an Energy Source for Helicobacter pylori. Science, 2002. 298(5599): p. 1788-1790.
    2. Chan WY, H.P., Leung KM, Chow J, Kwok F, Ng CS, Coccoid forms of Helicobacter pylori in the human stomach. Am J Clin Pathol. , 1994. 1994 Oct;102(4):503-7.
    3. R. M. Stark, G. J. Gerwig R. S. Pitman L. F. Potts N. A. Williams J. Greenman I. P. Weinzweig T. R. Hirst M. R. Millar, Biofilm formation by Helicobacter pylori. Letters in Applied Microbiology, 1999. 28(2): p. 121-126.
    4. Blaser, M.J., Helicobacters are indigenous to the human stomach: duodenal ulceration is due to changes in gastric microecology in the modern era. Gut, 1998. 43(5): p. 721-727.
    5. Konturek, J.W., Discovery by Jaworski of Helicobacter pylori and its pathogenetic role in peptic ulcer, gastritis and gastric cancer. Journal of Physiology and Pharmacology 2003, 54, S3, 23-41, 2003.
    6. Marshall, B. and J.R. Warren, Unidentified Curved Bacilli In The Stomach Of Patients With Gastritis And Peptic Ulceration. The Lancet, 1984. 323(8390): p. 1311-1315.
    7. Nomura, Abraham M. Y., et al., Helicobacter pylori CagA Seropositivity and Gastric Carcinoma Risk in a Japanese American Population. The Journal of Infectious Diseases, 2002. 186(8): p. 1138.
    8. Blaser, M.J., et al., Infection with Helicobacter pylori Strains Possessing cagA Is Associated with an Increased Risk of Developing Adenocarcinoma of the Stomach. Cancer Res, 1995. 55(10): p. 2111-2115.
    9. Ohkusa, T., et al., Helicobacter pylori infection induces duodenitis and superficial duodenal ulcer in Mongolian gerbils. Gut, 2003. 52(6): p. 797-803.
    10. Eidt, S., M. Stolte, and R. Fischer, Helicobacter pylori gastritis and primary gastric non-Hodgkin's lymphomas. J Clin Pathol, 1994. 47(5): p. 436-439.
    11. Parsonnet, J., et al., Helicobacter pylori Infection and Gastric Lymphoma. N Engl J Med, 1994. 330(18): p. 1267-1271.
    12. Kusters, J.G., Arnoud H. M. van Vliet, and E.J. Kuipers, Pathogenesis of Helicobacter pylori Infection. Clin. Microbiol. Rev., 2006. 19(3): p. 449-490.
    13. Koike, T., et al., Helicobacter pylori infection prevents erosive reflux oesophagitis by decreasing gastric acid secretion. Gut, 2001. 49(3): p. 330-334.
    14. Yamaji, Y., et al., Inverse background of Helicobacter pylori antibody and pepsinogen in reflux oesophagitis compared with gastric cancer: analysis of 5732 Japanese subjects. Gut, 2001. 49(3): p. 335-340.
    15. Cover, T. and M. Blaser, Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem., 1992. 267(15): p. 10570-10575.
    16. Leunk, R.D., P. T. Johnson, B. C. David, W. G. Kraft, and D. R. Morgan. , Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J. Med. Microbiol., 1988. 26(2): p. 93-99.
    17. Scott, D.R., et al., The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology, 1998. 114(1): p. 58-70.
    18. Moran, A.P., Pathogenic properties of Helicobacter pylori. Scand J Gastroenterol Suppl, 1996. 215: p. 22-31.
    19. Blaser, M.J. and J.C. Atherton, Heliobacter pylori persistence: biology and disease. Journal of Clinical Investigation, 2004. 113(3): p. 321-333.
    20. Segal, E.D., et al., Altered states: Involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(25): p. 14559-14564.
    21. Odenbreit, S., et al., Translocation of Helicobacter pylori CagA into Gastric Epithelial Cells by Type IV Secretion. Science, 2000. 287(5457): p. 1497-1500.
    22. Stein, M., R. Rappuoli, and A. Covacci, Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(3): p. 1263-1268.
    23. Asahi, M., et al., Helicobacter pylori CagA Protein Can Be Tyrosine Phosphorylated in Gastric Epithelial Cells. J. Exp. Med., 2000. 191(4): p. 593-602.
    24. Steffen Backert, E.Z., Volker Brinkmann, Ursula Zimny-Arndt, Alan Fauconnier, Peter R. Jungblut, Michael Naumann, Thomas F. Meyer,, Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cellular Microbiology, 2000. 2(2): p. 155-164.
    25. Linz, B., et al., An African origin for the intimate association between humans and Helicobacter pylori. Nature, 2007. 445(7130): p. 915-918.
    26. Chandrabali, G., et al., East Asian genotypes of Helicobacter pylori strains in Amerindians provide evidence for its ancient human carriage. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(23): p. 15107-15111.
    27. Falush, D., et al., Traces of Human Migrations in Helicobacter pylori Populations. Science, 2003. 299(5612): p. 1582-1585.
    28. Blaser, M.J. and D.E. Berg, Helicobacter pylori genetic diversity and risk of human disease. Journal of Clinical Investigation, 2001. 107(7): p. 767-773.
    29. Blaser, M.J., Ecology of Helicobacter pylori in the Human Stomach. Journal of Clinical Investigation, 1997. 100(4): p. 759-762.
    30. Suerbaum, S., et al., Free recombination within Helicobacter pylori. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(21): p. 12619-12624.
    31. Bjorkholm, B., et al., Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(25): p. 14607-14612.
    32. Rosche, W.A. and P.L. Foster, The role of transient hypermutators in adaptive mutation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(12): p. 6862-6867.
    33. Dawn A Israel, Angela S. Lou Martin J. Blaser, Characteristics of Helicobacter pylori natural transformation. FEMS Microbiology Letters, 2000. 186(2): p. 275-280.
    34. Nedenskov-Sorensen, P., G. Bukholm, and K. Bovre, Natural competence for genetic transformation in Campylobacter pylori. Journal of Infectious Diseases, 1990. 161(2): p. 365-366.
    35. Wang, Y. and D.E. Taylor, Natural transformation in Campylobacter species. J. Bacteriol., 1990. 172(2): p. 949-955.
    36. Aras, R.A., et al., Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(23): p. 13579-13584.
    37. Rahul A. Aras, Tohru Takata Takafumi Ando Arie van der Ende Martin J. Blaser, Regulation of the Hpy restriction-modification system of Helicobacter pylori by gene deletion and horizontal reconstitution. Molecular Microbiology, 2001. 42(2): p. 369-382.
    38. Appelmelk, B.J., et al., Phase Variation in H Type I and Lewis a Epitopes of Helicobacter pylori Lipopolysaccharide. Infect. Immun., 2000. 68(10): p. 5928-5932.
    39. Ge Wang, Zhongming Ge David A. Rasko Diane E. Taylor, Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Molecular Microbiology, 2000. 36(6): p. 1187-1196.
    40. Tomb, J.-F., et al., The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997. 388(6642): p. 539-547.
    41. Pride, D.T. and M.J. Blaser, Concerted evolution between duplicated genetic elements in Helicobacter pylori. Journal of Molecular Biology, 2002. 316(3): p. 629-642.
    42. Takata, T., et al., Phenotypic and genotypic variation in methylases involved in type II restriction-modification systems in Helicobacter pylori. Nucl. Acids Res., 2002. 30(11): p. 2444-2452.
    43. Xu, Q., et al., Identification of type II restriction and modification systems in Helicobacter pylori reveals their substantial diversity among strains. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(17): p. 9671-9676.
    44. Takafumi Ando, Qing Xu, Melaine Torres, Kazuo Kusugami, Dawn A. Israel, Martin J. Blaser, Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Molecular Microbiology, 2000. 37(5): p. 1052-1065.
    45. Ilver, D., et al., Helicobacter pylori Adhesin Binding Fucosylated Histo-Blood Group Antigens Revealed by Retagging. Science, 1998. 279(5349): p. 373-377.
    46. Pride, D.T., R.J. Meinersmann, and M.J. Blaser, Allelic Variation within Helicobacter pylori babA and babB. Infect. Immun., 2001. 69(2): p. 1160-1171.
    47. Mahdavi, J., et al., Helicobacter pylori SabA Adhesin in Persistent Infection and Chronic Inflammation. Science, 2002. 297(5581): p. 573-578.
    48. Robin Warren, J. and B. Marshall, Unidentified Curved Bacilli On Gastric Epithelium In Active Chrocnic Gastritis. The Lancet, 1983. 321(8336): p. 1273-1275.
    49. Hazell, S.L., et al., Campylobacter pyloridis and gastritis: Association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. Journal of Infectious Diseases, 1986. 153(4): p. 658-663.
    50. Hessey, S.J., et al., Bacterial adhesion and disease activity in Helicobacter associated chronic gastritis. Gut, 1990. 31(2): p. 134-138.
    51. Peek, R.M., et al., Heightened inflammatory response and cytokine expression in vivo to cagA(+) Helicobacter pylori strains. Laboratory Investigation, 1995. 73(6): p. 760-770.
    52. DM Jones, J.E., AJ Fox, P Sethi and PJ Whorwell, Antibody to the gastric Campylobacter-like organism (Campylobacter pyloridis): Clinical correlations and distribution in the normal population. J Med Microbiol 1986. 22: p. pp. 57–62.
    53. Isomoto, H., et al., Expression of Nuclear Factor-kappaB in Helicobacter pylori-Infected Gastric Mucosa Detected with Southwestern Histochemistry, in Scandinavian Journal of Gastroenterology. 2000, Taylor & Francis Ltd. p. 247-254.
    54. D'Elios, M., et al., T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J Immunol, 1997. 158(2): p. 962-967.
    55. Takeda, K., T. Kaisho, and S. Akira, Toll-like Receptors. Annual Review of Immunology, 2003. 21(1): p. 335-376.
    56. Gewirtz, A.T., et al., Helicobacter pylori Flagellin Evades Toll-Like Receptor 5-Mediated Innate Immunity. The Journal of Infectious Diseases, 2004. 189(10): p. 1914-1920.
    57. Krieg, A.M., CpG Motifs in Bacterial DNA and Their Immune Effects. Annual Review of Immunology, 2002. 20(1): p. 709-760.
    58. Kirkland, T., et al., Helicobacter pylori lipopolysaccharide can activate 70Z/3 cells via CD14. Infect. Immun., 1997. 65(2): p. 604-608.
    59. Muotiala, A., et al., Low biological activity of Helicobacter pylori lipopolysaccharide. Infect. Immun., 1992. 60(4): p. 1714-1716.
    60. Perez-Perez, G., et al., Activation of human THP-1 cells and rat bone marrow-derived macrophages by Helicobacter pylori lipopolysaccharide. Infect. Immun., 1995. 63(4): p. 1183-1187.
    61. Tomohiko Ogawa, Y.A., Yasuhiro Sakai, Masato Oikawa, Koichi Fukase, Yasuo Suda, Shoichi Kusumoto, Toshihide Tamura., Endotoxic and immunobiological activities of a chemically synthesized lipid A of Helicobacter pylori strain 206-1. FEMS Immunology and Medical Microbiology, 2003. 36(1-2): p. 1-7.
    62. Maeda, S., et al., Distinct Mechanism of Helicobacter pylori-mediated NF-kappa B Activation between Gastric Cancer Cells and Monocytic Cells. J. Biol. Chem., 2001. 276(48): p. 44856-44864.
    63. Backhed, F., et al., Gastric Mucosal Recognition of Helicobacter pylori Is Independent of Toll-Like Receptor 4. The Journal of Infectious Diseases, 2003. 187(5): p. 829-836.
    64. Bamford, K.B., et al., Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology, 1998. 114(3): p. 482-492.
    65. Perez-Perez, G.I., et al., Campylobacter pylori Antibodies in Humans. Annals of Internal Medicine, 1988. 109(1): p. 11.
    66. Molinari, M., et al., Selective Inhibition of Ii-dependent Antigen Presentation by Helicobacter pylori Toxin VacA. J. Exp. Med., 1998. 187(1): p. 135-140.
    67. Gebert, B., et al., Helicobacter pylori Vacuolating Cytotoxin Inhibits T Lymphocyte Activation. Science, 2003. 301(5636): p. 1099-1102.
    68. Wang, J., et al., Negative Selection of T Cells by Helicobacter pylori as a Model for Bacterial Strain Selection by Immune Evasion. J Immunol, 2001. 167(2): p. 926-934.
    69. Sharma, S.A., et al., Humoral and cellular immune recognition of Helicobacter pylori proteins are not concordant, in Clinical & Experimental Immunology. 1994, Blackwell Publishing Limited. p. 126-132.
    70. Knipp, U., et al., Partial characterization of a cell proliferation-inhibiting protein produced by Helicobacter pylori. Infect. Immun., 1996. 64(9): p. 3491-3496.
    71. Fan, X.J., et al., Gastric T lymphocyte responses to Helicobacter pylori in patients with H pylori colonisation. Gut, 1994. 35(10): p. 1379-1384.
    72. Wirth, H.P., et al., Helicobacter pylori Lewis expression is related to the host Lewis phenotype. Gastroenterology, 1997. 113(4): p. 1091-1098.
    73. Heneghan, M.A., C.F. McCarthy, and A.P. Moran, Relationship of Blood Group Determinants on Helicobacter pylori Lipopolysaccharide with Host Lewis Phenotype and Inflammatory Response. Infect. Immun., 2000. 68(2): p. 937-941.
    74. Aras, R.A., et al., Plasticity of Repetitive DNA Sequences within a Bacterial (Type IV) Secretion System Component. J. Exp. Med., 2003. 198(9): p. 1349-1360.
    75. Peng-Yuan Zheng, N.L.J., Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cellular Microbiology, 2003. 5(1): p. 25-40.
    76. Allen, L.-A.H., L.S. Schlesinger, and B. Kang, Virulent Strains of Helicobacter pylori Demonstrate Delayed Phagocytosis and Stimulate Homotypic Phagosome Fusion in Macrophages. Journal of Experimental Medicine, 2000. 191(1): p. 115-127.
    77. Alm, R.A., et al., Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 1999. 397(6715): p. 176-180.
    78. Censini, S., et al., cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(25): p. 14648-14653.
    79. Natalia S. Akopyants, S.W.C., Dangeruta Kersulyte, Jean E. Crabtree, Bryan E. Youree, C. Adonis Reece, Nick O. Bukanov, E. Susan Drazek, Bruce A. Roe, Douglas E. Berg,, Analyses of the cag pathogenicity island of Helicobacter pylori. Molecular Microbiology, 1998. 28(1): p. 37-53.
    80. Cover, T., et al., Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J. Biol. Chem., 1994. 269(14): p. 10566-10573.
    81. Atherton, J.C., et al., Mosaicism in Vacuolating Cytotoxin Alleles of Helicobacter pylori. J. Biol. Chem., 1995. 270(30): p. 17771-17777.
    82. Raetz, C.R.H. and C. Whitfield, Lipopolysaccharide Endotoxins. Annual Review of Biochemistry, 2002. 71(1): p. 635-700.
    83. Moran, A.P., I.M. Helander, and T.U. Kosunen, Compositional analysis of Helicobacter pylori rough-form lipopolysaccharides. J. Bacteriol., 1992. 174(4): p. 1370-1377.
    84. Anthony P. Moran, Cell surface characteristics of Helicobacter pylori. FEMS Immunology and Medical Microbiology, 1995. 10(3-4): p. 271-280.
    85. E.J. Walsh, A.P. Moran, Influence of medium composition on the growth and antigen expression of Helicobacter pylori. Journal of Applied Microbiology, 1997. 83(1): p. 67-75.
    86. Valkonen, K., T. Wadstrom, and A. Moran, Identification of the N-acetylneuraminyllactose-specific laminin- binding protein of Helicobacter pylori. Infect. Immun., 1997. 65(3): p. 916-923.
    87. Anthony P. Moran, S.A.B., Anna Rapa, Giuseppina Oderda,, In vivo expression of the 25-kDa laminin-binding protein of Helicobacter pylori. FEMS Immunology and Medical Microbiology, 2005. 43(3): p. 331-337.
    88. Slomiany, B.L., et al., Inhibition of gastric mucosal laminin receptor by Helicobacter pylori lipopolysaccharide: effect of nitecapone. Gen Pharmacol, 1991. 22(6): p. 1063-9.
    89. Moran, A.P., The role of lipopolysaccharide in Helicobacter pylori pathogenesis. Aliment Pharmacol Ther, 1996. 10 Suppl 1: p. 39-50.
    90. Terres, A.M., et al., Helicobacter pylori Disrupts Epithelial Barrier Function in a Process Inhibited by Protein Kinase C Activators. Infect. Immun., 1998. 66(6): p. 2943-2950.
    91. Piotrowski, J., et al., Induction of Acute Gastritis and Epithelial Apoptosis by Helicobacter pylori Lipopolysaccharide. Scandinavian Journal of Gastroenterology, 1997. 32(3): p. 203 - 211.
    92. G. O. Young, N. Stemmet, A. Lastovica, E. L. Van Der Merwe, J. A. Louw, I. M. Modlin, I. N. Marks, Helicobacter pylori lipopolysaccharide stimulates gastric mucosal pepsinogen secretion. Alimentary Pharmacology & Therapeutics, 1992. 6(2): p. 169-177.
    93. Moran, A.P., G. O. Young, and A. J. Lastovica, Pepsinogen induction by Helicobacter pylori lipopolysaccharides. Gut, 1998. 43(Suppl. 2): p. A15.
    94. Otto Holst, A.J.U., Helmut Brade, Hans-Dieter Flad, Ernst Th. Rietschel,, Biochemistry and cell biology of bacterial endotoxins. FEMS Immunology and Medical Microbiology, 1996. 16(2): p. 83-104.
    95. Moran, A.P., Structure-Bioactivity Relationships of Bacterial Endotoxins. Toxin Reviews, 1995. 14(1): p. 47-83.
    96. Moran, A., B. Lindner, and E. Walsh, Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides. J. Bacteriol., 1997. 179(20): p. 6453-6463.
    97. Moran, A.P., Lipopolysaccharide in bacterial chronic infection: Insights from Helicobacter pylori lipopolysaccharide and lipid A. International Journal of Medical Microbiology, 2007. 297(5): p. 307-319.
    98. Moran, A.P., The products of Helicobacter pylori that induce inflammation. Eur. J. Gastroenterol. Hepatol., 1998. 10(Suppl. 1): p. S3-S8.
    99. Pece, S., et al., Activity in the Limulus amebocyte lysate assay and induction of tumor necrosis factor-{alpha} by diverse Helicobacter pylori lipopolysaccharide preparations. Journal of Endotoxin Research, 1995. 2(6): p. 455-462.
    100. Semeraro, N., et al., Effect of Helicobacter pylori lipopolysaccharide (LPS) and LPS derivatives on the production of tissue factor and plasminogen activator inhibitor type 2 by human blood mononuclear cells. Journal of Infectious Diseases, 1996. 174(6): p. 1255-1260.
    101. Aspinall, G.O., et al., Lipopolysaccharide of the Helicobacter pylori Type Strain NCTC 11637 (ATCC 43504): Structure of the O Antigen Chain and Core Oligosaccharide Regions. Biochemistry, 1996. 35(7): p. 2489-2497.
    102. Schnaitman, C.A. and J.D. Klena, Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Mol. Biol. Rev., 1993. 57(3): p. 655-682.
    103. Nikaido, H. and M. Vaara, Molecular basis of bacterial outer membrane permeability. Microbiol. Mol. Biol. Rev., 1985. 49(1): p. 1-32.
    104. Monteiro, M.A., et al., Simultaneous Expression of Type 1 and Type 2 Lewis Blood Group Antigens by Helicobacter pylori Lipopolysaccharides. Molecular Mimicry Bewteen H. pylori Lipopolysaccharides and Human Gastric Epithelial Cell Surface Glycoforms. J. Biol. Chem., 1998. 273(19): p. 11533-11543.
    105. Mario A. Monteiro, B.J.A., David A. Rasko, Anthony P. Moran, Sean O. Hynes, Leann L. MacLean, Ken H. Chan, Frank St Michael, Susan M. Logan, Jani O'Rourke, Adrian Lee, Diane E. Taylor, Malcolm B. Perry,, Lipopolysaccharide structures of Helicobacter pylori genomic strains 26695 and J99, mouse model H. pylori Sydney strain, H. pylori P466 carrying sialyl Lewis X, and H. pylori UA915 expressing Lewis B. European Journal of Biochemistry, 2000. 267(2): p. 305-320.
    106. Zheng, P.Y., et al., Association of peptic ulcer with increased expression of Lewis antigens but not cagA, iceA, and vacA in Helicobacter pylori isolates in an Asian population. Gut, 2000. 47(1): p. 18-22.
    107. Simoons-Smit, I., et al., Typing of Helicobacter pylori with monoclonal antibodies against Lewis antigens in lipopolysaccharide. J. Clin. Microbiol., 1996. 34(9): p. 2196-2200.
    108. Hynes, S.O., et al., Differentiation of Helicobacter pylori Isolates Based on Lectin Binding of Cell Extracts in an Agglutination Assay. J. Clin. Microbiol., 1999. 37(6): p. 1994-1998.
    109. Kocharova, N.A., et al., Structure of an Atypical O-Antigen Polysaccharide of Helicobacter pylori Containing a Novel Monosaccharide 3-C-Methyl-D-mannose. Biochemistry, 2000. 39(16): p. 4755-4760.
    110. Senchenkova, S.y.N., et al., Structure of a -glycero--manno-heptan from the lipopolysaccharide of Helicobacter pylori. Carbohydrate Research, 2001. 331(2): p. 219-224.
    111. Eaton, K.A., et al., Helicobacter pylori with a Truncated Lipopolysaccharide O Chain Fails To Induce Gastritis in SCID Mice Injected with Splenocytes from Wild-Type C57BL/6J Mice. Infect. Immun., 2004. 72(7): p. 3925-3931.
    112. Wirth, H.-P., et al., Phenotypic diversity in Lewis expression of Helicobacter pylori isolates from the same host. Journal of Laboratory and Clinical Medicine, 1999. 133(5): p. 488-500.
    113. Wirth, H.-P., et al., Host Lewis phenotype-dependent Helicobacter pylori Lewis antigen expression in rhesus monkeys. FASEB J., 2006. 20(9): p. 1534-1536.
    114. Moran, A.P., Helicobacter pylori lipopolysaccharide-mediated gastric and extragastric pathology. Journal of Physiology and Pharmacology, 1999. 50(5): p. 787-805.
    115. Anthony P. Moran, Erik Sturegard, Hakan Sjunnesson, Torkel Wadstrom, Sean O. Hynes,, The relationship between O-chain expression and colonisation ability of Helicobacter pylori in a mouse model. FEMS Immunology and Medical Microbiology, 2000. 29(4): p. 263-270.
    116. Appelmelk, B.J., et al., Why Helicobacter pylori has Lewis antigens. Trends in Microbiology, 2000. 8(12): p. 565-570.
    117. Edwards, N.J., et al., Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Molecular Microbiology, 2000. 35: p. 1530-1539.
    118. Thompson, J.D., D.G. Higgins, and T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 1994. 22(22): p. 4673-4680.
    119. Dische, Z. and E. Borenfreund, A New Spectrophotometric Method For The Detection And Determination Of Keto Sugars And Trioses. J. Biol. Chem., 1951. 192(2): p. 583-587.
    120. Bigham, E.C., et al., Inhibition of arabinose 5-phosphate isomerase. An approach to the inhibition of bacterial lipopolysaccharide biosynthesis. J. Med. Chem., 1984. 27(6): p. 717-726.
    121. Meredith, T.C. and R.W. Woodard, Escherichia coli YrbH Is a D-Arabinose 5-Phosphate Isomerase. J. Biol. Chem., 2003. 278(35): p. 32771-32777.
    122. Meredith, T.C. and R.W. Woodard, Identification of GutQ from Escherichia coli as a D-Arabinose 5-Phosphate Isomerase. J. Bacteriol., 2005. 187(20): p. 6936-6942.
    123. Meredith, T.C. and R.W. Woodard, Characterization of Escherichia coli D-arabinose 5-phosphate isomerase encoded by kpsF: implications for group 2 capsule biosynthesis. Biochem J, 2006. 395(2): p. 427-432.
    124. Tzeng, Y.-L., et al., KpsF Is the Arabinose-5-phosphate Isomerase Required for 3-Deoxy-D-manno-octulosonic Acid Biosynthesis and for Both Lipooligosaccharide Assembly and Capsular Polysaccharide Expression in Neisseria meningitidis. J. Biol. Chem., 2002. 277(27): p. 24103-24113.
    125. Bateman, A., The SIS domain: a phosphosugar-binding domain. Trends in Biochemical Sciences, 1999. 24(3): p. 94-95.
    126. Bateman, A., The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends in Biochemical Sciences, 1997. 22(1): p. 12-13.
    127. Maret, W., et al., Inhibitory sites in enzymes: Zinc removal and reactivation by thionein. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(5): p. 1936-1940.
    128. Tan, L. and C. Darby, Yersinia pestis Is Viable with Endotoxin Composed of Only Lipid A. J. Bacteriol., 2005. 187(18): p. 6599-6600.
    129. Tzeng, Y.-L., et al., Endotoxin of Neisseria meningitidis Composed Only of Intact Lipid A: Inactivation of the Meningococcal 3-Deoxy-D-Manno-Octulosonic Acid Transferase. J. Bacteriol., 2002. 184(9): p. 2379-2388.
    130. Steeghs, L., et al., Meningitis bacterium is viable without endotoxin. Nature, 1998. 392(6675): p. 449-449.
    131. Belunis, C.J., et al., Inhibition of Lipopolysaccharide Biosynthesis and Cell Growth following Inactivation of the kdtA Gene in Escherichia coli. J. Biol. Chem., 1995. 270(46): p. 27646-27652.
    132. Goldman, R.C., C.C. Doran, and J.O. Capobianco, Analysis of lipopolysaccharide biosynthesis in Salmonella typhimurium and Escherichia coli by using agents which specifically block incorporation of 3-deoxy-D-manno-octulosonate. J. Bacteriol., 1988. 170(5): p. 2185-2191.
    133. Rick, P.D. and M.J. Osborn, Lipid A mutants of Salmonella typhimurium. Characterization of a conditional lethal mutant in 3-deoxy-D-mannooctulosonate-8-phosphate synthetase. J. Biol. Chem., 1977. 252(14): p. 4895-4903.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE