研究生: |
廖偉呈 |
---|---|
論文名稱: |
Constructing Psi-Series Solution for Quadratic Polynomial Systems |
指導教授: | 許世壁 |
口試委員: |
林秀豪
陳建隆 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 19 |
中文關鍵詞: | 級數解 、二次實係數多項式 、建構 |
外文關鍵詞: | psi-series, blow up, quadratic systems |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇文章我們想要討論如何去建構一個Psi級數解滿足二次多項式微分方程。
我們想要了解在靠近歧異點的時候解的行為。
那我們有一個若且為若的條件保證:若解在有線時間內趨近無窮大若且為若解的係數皆為實數。
所以我們在這邊探討一個擬態物理中的常微分方程的二微與三微情形。
In this paper, we discuss how to build a local solution for a system of ordinary differentiable equations of quadratic forms by constructing a psi-series. We want to understand how the solution behaves around the singularities. There
are a necessary and sufficient condition: Real leading coefficients ensure the occurrence of blow up in finite time, and real time singularity implies that the
leading coefficients of one asymptotic series are real.
The Psi-series of quadratic systems on the plane has been studied. The relationship between the behavior and integrability of the system is also illustrated.
[1] Alain Goriely,Craig Hyde, Necessary and Sufficient Conditions for Finite Time Singularities in Ordinary Differential Equations, JDE 161, 422-448 (2000).
[2] Arnau Mir , Amadeu Delshams ,Psi-Series of Quadratic Systems on the Plane (1995)
[3] Hong-Yan Shih, Wen-Min Huang, Sze-Bi Hsu, and Hsiu-Hau Lin, Hierarchy of relevant couplings in perturbative renormalization group transformations,PHYSICAL REVIEW B 81, 121107 R (2010)