研究生: |
王韋婷 Wang, Wei-Ting |
---|---|
論文名稱: |
新穎聚離子錯合型微胞運用於抗菌藥物輸送之研發 Development of Novel Polyion Complex Micelles for Antifungal Drug Delivery |
指導教授: |
薛敬和
Hsiue, Ging-Ho |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 兩性黴素B 、聚□唑啉 、聚天冬胺酸 、聚離子錯合型微胞 、藥物控制釋放 、體外抗黴菌效率 |
外文關鍵詞: | Amphotericin B, poly(2-ethyl-2-oxazoline), poly(aspartic acid), Polyion complex micelle, Drug controlled release, Antifungal activity |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的是利用聚□唑啉-聚天冬胺酸兩團聯共聚物(Poly(2-ethyl-2-oxazoline)-block-Poly(aspartic acid),PEOz-b-PAsp)以靜電作用力包覆正電藥物兩性黴素B (amphotericin B),形成具有核殼結構 (core-shell structure)新穎性聚離子錯合型微胞 (polyion complex micelles,PIC micelles)做為藥物輸送載體。內核的聚胺基酸高分子Poly(aspartic acid) (PAsp),為親水性高分子,側端具有羧基,在水溶液酸鹼值高於pKa (pH>5.2)環境下會解離,能以離子鍵攜帶大量陽離子藥物,亦提供疏水性物理作用力,增加藥物包覆效率。使用薄膜水合法製備出的AmB/PEOz-b-PAsp之聚離子錯合型微胞其平均粒徑在150 nm以下,且包覆率均達40 %以上。在藥物釋放部分,AmB/PEOz-b-PAsp之聚離子錯合型微胞在40小時可將60 % AmB釋放。在抗菌實驗中,AmB/PEOz-b-PAsp之聚離子錯合型微胞其最低抑制濃度 (MIC) 為20μg/mL。在三天後仍然有效抑制菌的生長,抗菌時效比Fungizone®更佳。成功將AmB/PEOz-b-PAsp PIC微胞運用於藥物傳遞,AmB/PEOz-b-PAsp PIC微胞有效率將AmB包覆和釋放,對於抑制真菌有長效作用,並且對於正常細胞沒有產生明顯毒性。綜合以上實驗結果得知,本研究中成功利用兩團聯共聚物建立出新穎性聚離子錯合型微胞,其具有奈米尺寸、低毒性,高藥物釋放效率等優點,對於藥物傳輸系統上具有相當應用之潛力。
關鍵字: 兩性黴素B (amphotericin B)、聚□唑啉、聚天冬胺酸、聚離子錯合型微胞、藥物控制釋放、體外抗黴菌效率
A novel poly(2-ethyl-2-oxazoline)-block-poly(aspartic acid) (PEOz-b-PAsp) was synthesized and investigated as a potential carrier for the amphotericin B (AmB) delivery in forming polyion complex (PIC) micelles. Nano-scale AmB/PEOz-b-PAsp PIC micelles were prepared by thin film method. The nano-scale PIC micelles with core-shell structure were formed with a hydrophilic outer shell and dissociation of the carboxylic group from PAsp to become a hydrophobic inner core for drug delivery application. The resulting nano-scale PIC micelles with AmB and PEOz-b-PAsp showed an average diameter about 108 nm. The drug content of the PIC micelles can be as high as 47 % in phosphate buffer solution with pH 7.4. The release of AmB from nano-scale PIC micelles was 60 % at 40 h in phosphate buffer solution with pH 7.4. The minimal inhibitory concentration (MIC) of PIC micelles was 20μg/mL, and antifungal activity of PIC micelles was better than Fungizone® during 72 hrs. In conclusion, AmB/PEOz-b-PAsp PIC micelles were developed and optimized for drug delivery to allow efficient antifungal activity with low cytotoxicity. Engineering of biodegradable polymers to form non-covalent drug-polymer interactions of PIC micelles constitutes a useful approach for the future design of drug carriers.
Keywords: Amphotericin B, Diblock copolymer, Polyion complex micelle, Drug controlled release, Antifungal activity.
1. Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Angew.
Chem. Int. Ed. 2003, 42, 4640.
2. B.G. Yu, T. Okano, K. Kataoka, G.S. Kwon, J. Control.
Release. 1998, 53, 131-136.
3. S.B. La, T. Okano, K. Kataoka, J. Pharm. Sci. 1996, 85,
85-90.
4. I.G. Shin, S.Y. Kim, Y.M. Lee, C.S. Cho, Y.K. Sung, J.
Control. Release. 1998, 51, 1-11.
5. G.S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai,
K. Kataoka, J. Control. Release 1997, 489, 195-201.
6. G.S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai,
K. Kataoka, Pharm. Res. 1995, 12, 192-195.
7. M. Yokoyama, S. Fukuhima, R. Uehara, K. Okamoto, K.
Kataoka, Y. Sakurai, T. Okano, J. Control. Release. 1998,
50, 79-92.
8. T.K. Bronich, V.A. Kabanov, A.V. Kabanov, A. Eisenberg,
Macromolecules 1997, 30, 3519.
9. R. Chandra, R. Rustgi, Prog. Polym. Sci., 1998, 23, 1273-1335.
10. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M.
Shakesheff, Chem. Rev., 1999, 99, 3181.
11. T. Kagiya, S. Narisawa, T. Maeda and K. Fukui, J. Polym.
Sci. Polym. Lett. Ed. 1966, B4, 441.
12. T. Saegusa, Makromol. Chem., Macromol. Symp. 1988,
13/14, 111
13. K. Aoi and M. Okada, Prog. Polym. Sci. 1996, 21, 151.
14. S. Kobayashi, E. Masuda, S. I. Shoda and Y. Shimano,
Macromolecules 1989, 22, 2878.
15. I. C. Kwon, Y. H. Bae and S. W. Kim, Nature 1991, 354,
291.
16. J. Kovacs, I. Koenyves, A. Pusztai, Experientia 1953, 9,
259.
17. S. K Wolk, G. Swift, Y. H. Paik, K. M. Yocom, R. L.
Smith, E. S. Simon, Macromolecules 1994,27, 7613.
18. A. Vegotosky, K. Harada, S. W. Fox, J. Am. Chem. Soc.
1958,80, 3361
19. K. Harada, J. Org. Chem. 1959, 24, 4, 1662.
20. J. Kovacs, H. N. Kovacs, I. Konyves,; J. Csaszar, T. Vajda,
H. Mix, J. Org. Chem. 1961, 26, 1084
21. P. Neri, G. Antoni, F. Benvenuti, F. Cocoda, G. J. Gazze,
Med. Chem. 1973, 16, 893.
22. M. Frankel and A. Berg, Nature, 1949, 168 ,213.
23. Meggy, A. B., J. Chem. Soc., 1956, 1444 .
24. K. Harada, S. W. Fox, J. Am. Chem. Soc. 1958, 80, 2694.
25. S. W. Fox, K. Harada, J. Am. Chem. Soc. 1960, 82, 3744.
26. N. Honda, T. Kawai, F. Higashi, Makromol. Chem. 1978,
179 (6), 1643.
27. Y. Ito, K. Iwata, I. K. Kang, Y. Imanishi, M. Sisido, Int.
J.Biol. Macromol. 1988, 10 (4), 201.
28. E. Dessipri, K. H. Yeap,; D. A. Tirrell, Polym. Prepr.
(Am.Chem. Soc., Div. Poly. Chem.) 1995, 36 (1), 536.
29. (a) H.R. Kricheldorf, a-Aminoacid-N-carboxyanhydrides
and Related Materials, Springer, New York, 1987;
(b) H.R. Kricheldorf, in: S. Penczek (Ed.), Models of
Biopolymers by Ring-Opening Polymerization, CRC Press,
Boca Raton, FL, 1990. (1994) 429–434.
30. R. A. Gross, B. Kalra, Science 2002, 297, 803.
31. P. E. Kintzel, G. H. Smith, Am. J. Hosp. pharm. 1992 ,49,
1156-1164
32. D. J. Drutz, A. Spickard , D. E. Rogers et al., Am. J. Med.
1968, 45, 405-418.
33. M. L. Littman, P. L. Horowitz, J.G. Swadey, Am. J. Med.
1958, 24, 568-592.
34. H. Bader, H. Ringsdorf, B. Schmidt, Angew. Makromol.
Chem. 1984, 123/124, 457.
35. M. Malmsten, B. Lindman, Macromolecules 1992, 25,
5440.
36. K. N. Prasad, T. T. Luong, A. T. Florence, J. Paris, C.
Vaution, M. Seiller, F. Puisieux, J. Colloid Interface Sci.
1979, 69, 225.
37. A. V. Kabanov, V. P. Chekhonin, V. Y. Alakhov, E. V.
Batrakova, A. S. Lebedev, N. S. Melik-Nubarov, S. A.
Arzhakov, A. V. Levashov, G. V. Morozov, E. S. Severin,
V. A. Kabanov, FEBS Lett. 1989, 258, 343.
38. S. B. La, T. Okano, K. Kataoka, J. Pharm. Sci. 1996, 85,
85.
39. J. Connor, N. Norley, L. Huang, Biochim. Biophys. Acta
1986, 884, 474.
40. I. L. Shin, S. Y. Kim, Y. M. Lee, C. S. Cho, Y. K. Sung, J.
Control. Release. 1998, 51, 1.
41. C. L. Zhao, M. A. Winnik, G. Riess, M. D. Croucher,
Langmuir 1990, 6, 514.
42. T. Inoue, G. Chen, K. Nakamae, A. S. Hoffman, J. Control.
Release. 1998, 51, 221.
43. L. W. Seymour, R. Duncan, J. Strohalm, J. Kopecek, J.
Biomed. Mater. Res. 1987, 21, 1341.
44. A. Harada, K. Kataoka, Macromolecules 1998, 31, 288.
45. K. Kataoka, H. Togawa, A. Harada, K. Yasugi,
Macromolecules 1996, 29, 8556.
46. A. Harada, A. Kataoka, Macromolecules 1995, 28, 5294.
47. Yokoyama et al,. J. Control. Release. 1990, 11, 269.
48. G.S. Kwon, K. Kataoka, Adv. Drug Deliv. Rev., 1995, 16,
295–309
49. G.S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, K.
Kataoka, Pharm. Res., 1993, 10, 970.
50. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano,
Sakurai, K. Kataoka, S. Inoue, Cancer Res , 1990, 50,
1693.
51. Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Angew.
Chem. Int. Ed. 2003, 42, 4640.
52. S. Katayose, K. Kataoka, J. Pharm. Sci. 1998, 87, 160.
53. A.V. Kabanov, T.K. Bronich, V.A. Kabanov, A. Eisenberg,
Macromolecules 1996, 29, 6797.
54. G.D. Zhang, A. Harada, N. Nishiyama, Journal of Controlled
Release 2003, 93, 141.
55. A. Harada, K. Kataoka, Langmiur 1999, 15, 4208
56. A. Harada, K. Kataoka, Macromolecules 1998, 31, 288.
57. A. Harada, K. Kataoka, Macromolecules 1998, 31,
288-294.
58. A. Harada, K. Kataoka, Pure Appl. Chem. 1997, A31, 2119-2133.
59. S. Katayose, K. Kataoka, J. Pharm. Sci., 1998, 87, 160–163.
60. K. Kataoka, H. Togawa, A. Harada, K. Yasugi, T. Matsumoto, S.
Katayose, Macromolecules, 1996, 29, 8556–8557.
61. M.A. Wolfert, E.H. Schacht, V. Toncheva, K. Ulrich, O. Nazarova,
L.W. Seymour, Human Gene Ther., 1996, 7, 2123–2133.
62. L.W. Seymour, K. Kataoka, A.V. Kabanov, Cationic block
copolymers as self-assembling vectors for gene delivery, in: A.V.
Kabanov, L.W. Seymour, P. Felgner (Eds.), Self-Assembling
Complexes for Gene Delivery. Laboratory to Clinical Trial, John
Wiley and Sons, Chichester, 1998, pp. 219–239.
63. A. Harada, K. Kataoka. J. Macromol. Sci., Pure Appl.
Chem 1997,A34, 2119, 2133.
64. T.K. Bronich, V.A. Kabanov, A.V. Kabanov, A. Eisenberg,
Macromolecules 1997, 30, 3519.
65. S. Stolnik, J. Control. Release. 2001, 75, 249.
66. C. C. Wang, Colloids and Surfaces A: Physicochem. Eng.
2006, 278 , 60.
67. (a) E. Lennette, A. Balows, W. Hausler, H.
Shadomy,Microbiology, American Society for
Microbiology, Washington, DC 1985, Manual of Clinical
Microbiology, American Society for Microbiology,
Washington, DC.
(b) C. Tasset,, F. Goethals, V. Pr´eat, M. Roland,. Int. J. Pharm.,
1990, 58, 41–48.
68. W.D. Fuller, MS. Velander, and M. Goodman, Biopolymers 1976, 15,
1869
69. E. Jule, Y. Nagasaki, K. Kataoka, Bioconjug. Chem. 2003, 14, 177.
70. T. Govender, S. Stolnik, J. Control. Release. 2001, 75, 249.
71. M. Yokoyama, K. Kataoka, J. Control. Release. 1990 ,11,
269-278.
72. S. M. Thombre, B.D. Sarwade,Journal of Macromolecular
Science,Part A: Pure and Applied Chemistry, 2005, 42, 1299.
73. T. Nakato, M.Yoshitake, Macromolecular, 1998, 31, 2107.
74. C. S. Brazel, N. A. Peppas, Macromolecules 1995, 28, 8016.
75. M. M. Standish, J. C. Watkins. J Mol Biol. 1965, 13, 238-252.
76. H. Yalkowsky. AAPS PharmSciTech. 2003, 4 Article 52.